

Table of content

- A. General machine introduction.
- B. Transmission.
- C. Brake systems.
- D. Hydraulics.
- E. Electric.
- F. Engines.
 - 1. After treatment device
- G. Maintenance.

General machine introduction

3800 ccm

102 HP/2200 rpm

42 kgm/1600 rpm

107 Lwa / 78.6 Lpa

- Engine: CUMMINS QSF3.8
- Displacement:
- Rated Power:
- Max Torque:
- Noise level (dBA):
- Vibration level: ????? m/s²
- Max speed: +/- 31 km/h
- Fuel con. (60 VDI): 80D-9 8.5 l/h

70D-9 – 60D-9 – 50D-9 –

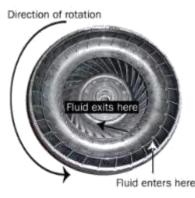
Transmission, converter and differential

Transmissions Converters Differentials

Torque converter theory

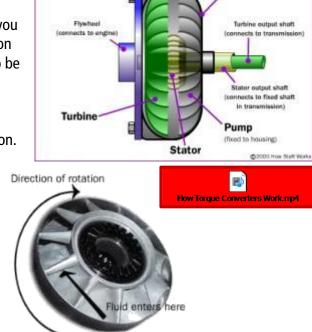
A torque converter is a type of fluid coupling, which allows the engine to spin somewhat independently of the transmission. If the engine is turning slowly, such as when the machine is idling, the amount of torque passed through the torque converter is very small, so keeping the machine still requires only a light pressure on the brake pedal. If you were to step on the gas pedal while the machine is stopped, you would have to press harder on the brake to keep the car from moving. This is because when you step on the gas, the engine speeds up and pumps more fluid into the torque converter, causing more torque to be transmitted to the wheels.

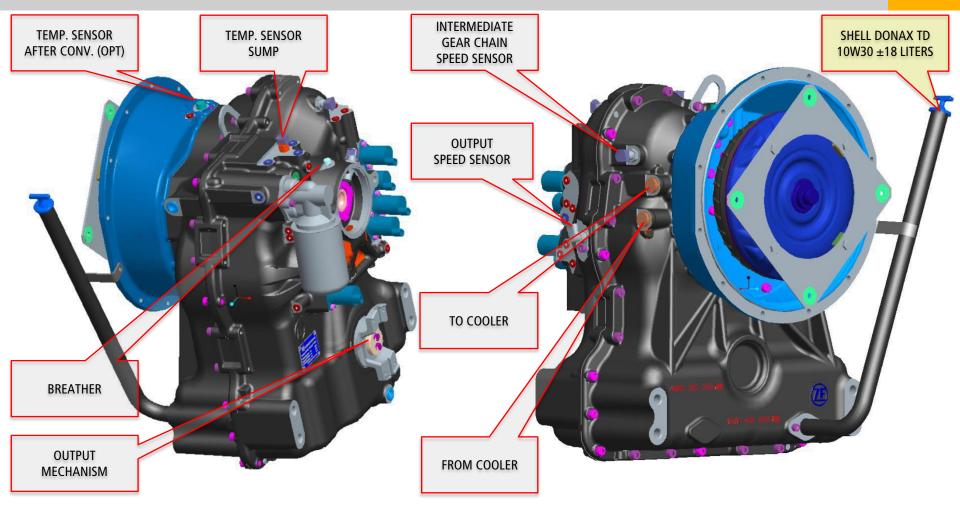
Converter can be tested in 2 ways:


T/C Stall 1867±100 rpm

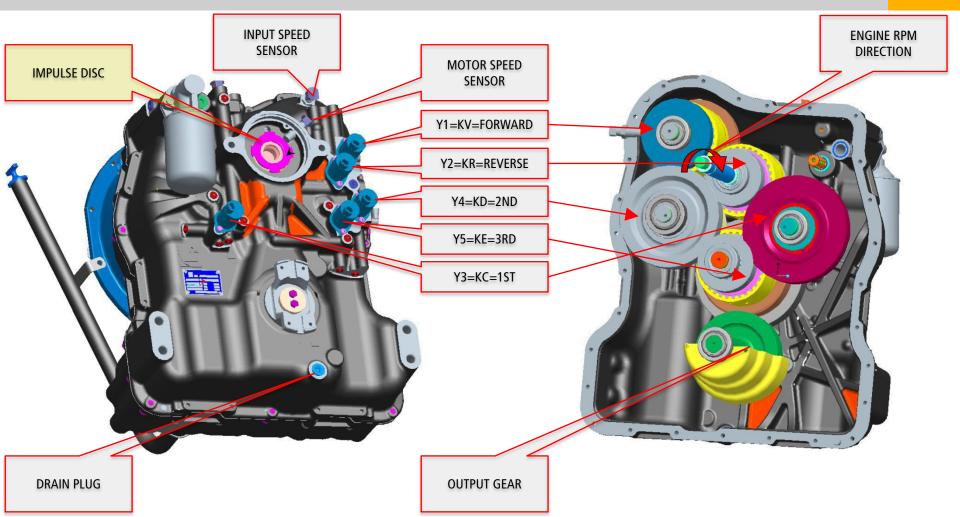
A. Inlet – Outlet pressure test

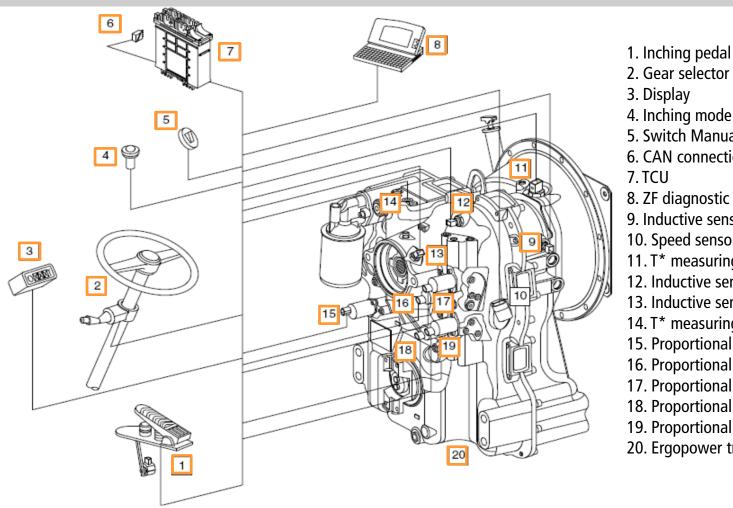
B. Stall test: If the converter is working, engine RPM will drop under load conditions at full acceleration.


The pump section of the torque converter is attached to the housing

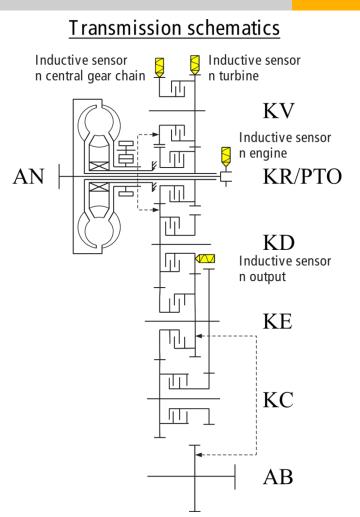

The torque converter turbine: Note the spline in the middle. This is where it connects to the transmission.

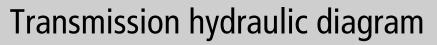
The stator sends the fluid returning from the turbine to the pump. This improves the efficiency of the torque converter. Note the spline, which is connected to a one-way clutch inside the stator.

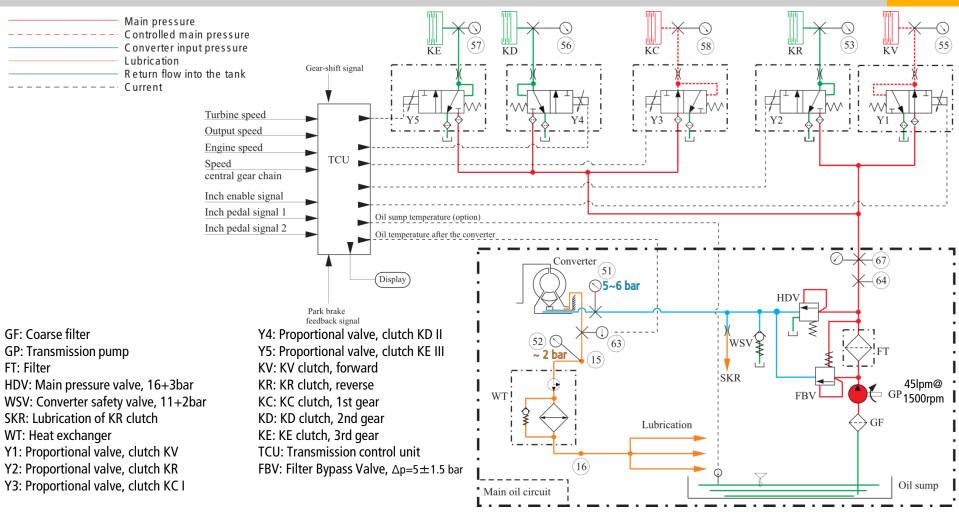



Transmission – ZF 3WG-94EC - COMPONENTS

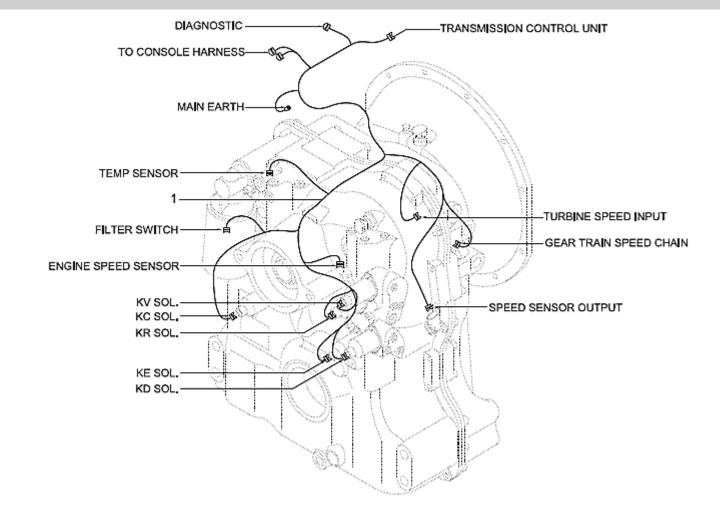
Transmission – ZF 3WG-94EC - COMPONENTS

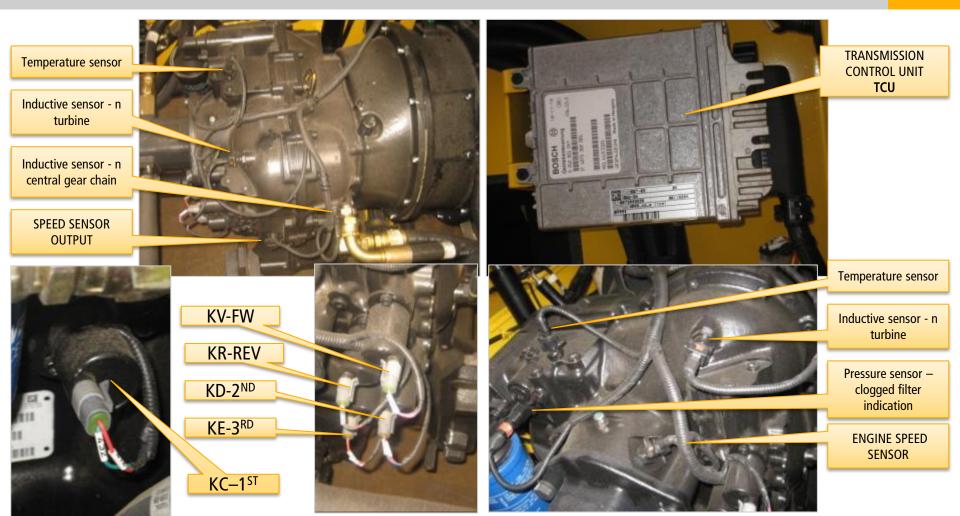

Transmission electric components



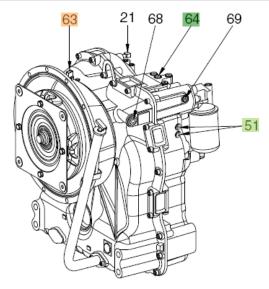

- 3. Display 4. Inching mode switch 5. Switch Manual/Automatic 6. CAN connection 7. TCU 8. ZF diagnostic Testman /Pro 9. Inductive sensor - speed of central gear chain 10. Speed sensor - output 11. T* measuring point after converter (No. 63) 12. Inductive sensor - turbine speed 13. Inductive sensor - engine speed 14. T* measuring point for converter (No. 64) 15. Proportional valve Y3 - KC clutch: 1st speed 16. Proportional valve Y2 - KR clutch: REV 17. Proportional valve Y1 - KV clutch: FW 18. Proportional valve Y5 - KE clutch: 3nd speed
- 19. Proportional valve Y4 KD clutch: 2nd speed
- 20. Ergopower transmission 3 WG-94 EC

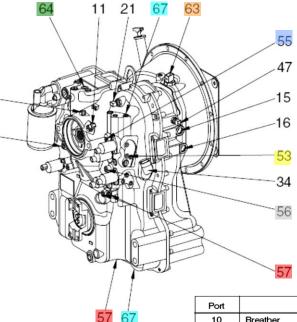
Transmission internal structure

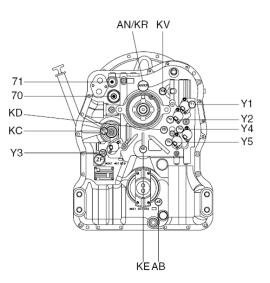

No.		Denomination of item				Connection
		Massuring points for p	roccuro oil and to	mnoratura		
51	=	Measuring points for p Before the converter - op	M10x1			
53				11+2 bar 16+3 bar		M10x1
	=		KR			
55	=	Forward clutch	KV	16+3 bar		M10x1
56	=	Clutch	KD	16+3 bar		M10x1
57	=	Clutch	KE	16+3 bar		M10x1
58	=	Clutch	KC	16+3 bar		M10x1
63	=	T emperature after the co	nverter 100° C; sh	ort-term 12	0° C	M14x1.5
64	=	T emperature sensor				M12x1,5
67	=	System pressure		16+3 bar		M10x1
		Maluar and anneational				
10	=	V alves and connections: B reather				10x1
			toychongor			7/8" 14 UNF
15		Connection to wards hea				
16	=	Connection from heat ex				7/8" 14 UNF
68	=	Connection after ZF filte				9/16-18 UNF-2B
69	=	Connection before ZF fil				7/8″ 14 UN 2A
70	=	Converter safety valve ()				
71	=	Main pressure valve (HD	V)			
		1 - d				
		Inductive transmitters a				
11	=	Inductive transmitter	n Engine		M18x1,5	
21	=	Inductive transmitter	n Turbine		M18x1,5	
34	=	Speed sensor	n Output			
47	=	Inductive transmitter	n Central gear tra	ain	M18x1,5	



Transmission harness

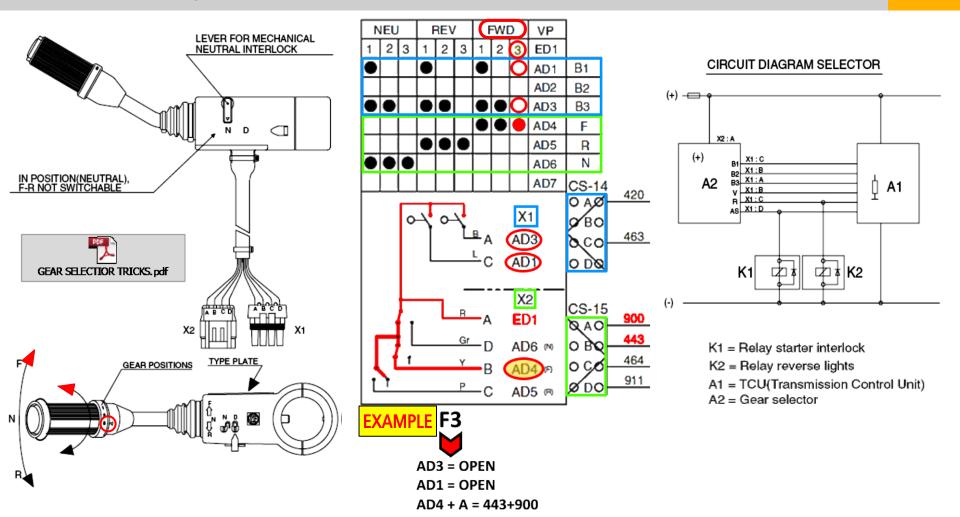



Transmission sensors and TCU



Transmission pressure check points

1(



Port		Description		Size
51	Before the converter	opening pressure	11 + 2 bar	M10x1
53	Reverse clutch	KR	16 + 3 bar	M10x1
55	Forward clutch	KV	16 + 3 bar	M10x1
56	Clutch	KD	16 + 3 bar	M10x1
57	Clutch	KE	16 + 3 bar	M10x1
58	Clutch	KC	16 + 3 bar	M10x1
63	Temperature after the	e converter 100° C ;sł	nort-term 120°C	M14x1.5
64	Temperature sensor			M12x1.5
67	System pressure		16 + 3 bar	M10x1

Port	Description	Size
10	Breather	M10x1
15	Connection towards heat exchange	7/8" 14 UNF
16	Connection from heat exchanger	7/8" 14 UNF
68	Connection after fine filter	9/6-18 UNF-2B
69	Connection before fine filter	7/8" 14 UN 2A
70	Converter safety valve(WSV)	
71	Main pressure valve(HDV)	
Port	Description	Size
11	Inductive transmitter n Engine	M18x1.5
21	Inductive transmitter n Turbine	M18x1.5
34	Speed sensor n Output	
47	Inductive transmitter n Central gear train	M18x1.5

Transmission gear selector

Transmission AEB clutch calibration

- 1. Start engine after parking the machine on flat floor and blocking wheels.
- 2. Release parking brake.
- 3. With stepping on the service brake, operate T/M STALL(in 3rd speed).
- (To avoid defect of clutch pack, repeat -10 sec of operation and then10 sec rest in neutral)
- 4. When the T/M oil temperature reaches **75~80° C**, lock the parking brake and then shift gear to neutral position to keep the machine at LOW RPM.
- 5. Connect the AEB STARTER to T/M controller.
- 6. Push AEB STARTER over 3 seconds.
- 7. Confirm the status of AEB from the DISPLAY.
- Normal operation shows "ST, KR, KV, KC, KD, KE" orderly for 3~5minutes.
- After the successful completion, it displays " OK".
- With a new controller, it may display "F6" error code before AEB, but after AEB, it will disappear.
- 8. In case of abnormal running, it may display "STOP" with the appropriate error code.
- 9. After troubleshooting, start the machine again to repeat above.

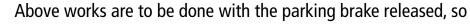
As the STALL operation has to be done, the SERVICE BRAKE must be locked perfectly to avoid the fatal accident.

AEB Starter BIOL 211 77E COL 211 77E

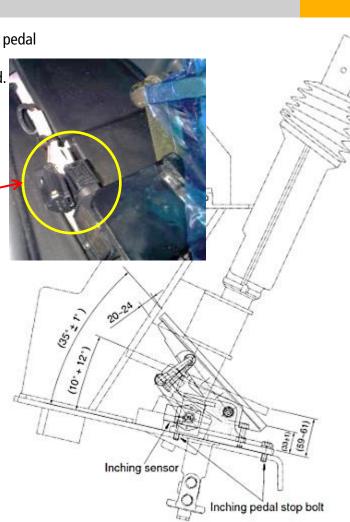
ZF and HHIE p/n: 0501-211-778

Carryout these tests every 1000H or when the T/M has been serviced

Transmission AEB inching pedal calibration


The brake pedal serves to actuate the hydraulic brakes on the front axle. At the beginning of the pedal stroke, the inching spool of the transmission control valve is actuated to shift the hydraulic clutch to neutral and turn off the driving force. By treading the pedal further, the brake is applied.

INITIALIZING THE INCHING SENSOR


- 1. Start engine after parking the machine on flat floor and blocking wheels.
- 2. Release parking brake and keep neutral gear shift.
- 3. Adjust the inching sensor linkage so that the regular voltage is supplied to inching sensor when operating the pedal.

(Regular voltage : Before pedal operation($1 \pm 0.1V$), After pedal operation($3.5 \pm 0.1V$))

- 4. Stop the engine and then just KEY ON. (Release parking brake, keep neutral gear)
- 5. Connect the AEB STARTER to the T/M controller.
- 6. Push AEB STARTER over 3 seconds.
- 7. If display shows "▼IP", Step on the pedal fully.
- 8. If display shows " IP", release "OK"
- 9. After the successful completion, it displays "OK".
- 10. In case of abnormal running, it may display "STOP" with the appropriate error code.
- 11. After troubleshooting, start the machine again to repeat above.

machine's wheels must be blocked for safety.

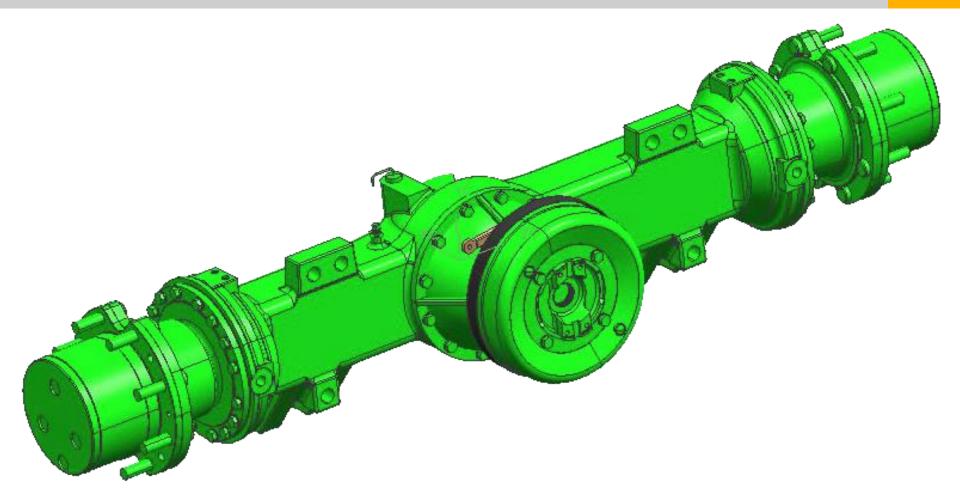
Transmission display codes – during operation

	,			ł		
Symbol	meaning	remarks	WT	warning torque converter temperature	changes between actual gear/direction while driving, in neutral only displayed if no fault is	
1F, 1R	actual gear and direction				detected (spanner)	
2F, 2R 3F, 3R	left digit shows actual gear right digit shows actual direction				deteted (spanner)	
3F, 3K 4F	right digit shows actual direction		WE	warning high engine speed	changes between actual gear/direction while	
5F				in an angle ongline speed	driving, in neutral only displayed if no fault is	
6F					detected (spanner)	
LF, LR	limp home gear					
F or R, no gear	Clutch Cutoff		WV	warning high output speed (velocity)	changes between actual gear/direction while	
F or R flashing	direction F or R selected while turbine	CAUTION gear will engage if turbine speed			driving, in neutral only displayed if no fault is	
5	speed is too high	drops			detected (spanner)	
NN	not neutral, waiting for neutral after	to engage a gear, first move shift selector to				
	power up or a severe fault	neutral position and again to F or R position	WL	warning high transmission input torque	changes between actual gear/direction while	
**	oil temperature too low, no gear available	warm up engine / transmission		(load)	driving, in neutral only displayed if no fault is detected (spanner)	
*N	oil temperature low, only one gear	warm up engine / transmission				
	available		WO	warning high transmission output torque	changes between actual gear/direction while	
1 bar (special	manual mode 1st gear			(load)	driving, in neutral only displayed if no fault is	
symbol)					detected (spanner)	
2 bars	manual mode 2 nd gear		PN	r c F B I c I l'i l'		
3 bars	manual mode 3 rd gear		PN	direction F or R selected while parking	transmission in neutral until parking brake is released	
4 bars	manual mode 4 th gear and also 5 th and 6 th gear in 6WG			brake engaged	CAUTION: vehicle starts to move after release	
4 bars and 2	automatic mode				of parking brake	
arrows			EE O. L'	1 at 14 at 1		
Bars flashing	6 WG: converter lockup clutch open	difference of engine and turbine speed above a	EE flashing	no communication with display	checked wiring from TCU to display	
	4 WG: Downshift mode activ	certain limit and lockup clutch not activated				
Spanner	at least one fault activ	select neutral to get fault code displayed				
Fault code	see fault code list					
WS	warning sump temperature	changes between actual gear/direction while driving, in neutral only displayed if no fault is detected (spanner)			(2) Abbreviations OC : Open circuit SC : Short circuit	
WR	warning retarder temperature	changes between actual gear/direction while driving, in neutral only displayed if no fault is detected (spanner)			OP mode : Operating mode TCU : Transmission control unit EEC : Electronic engine controller PTO : Power take off	

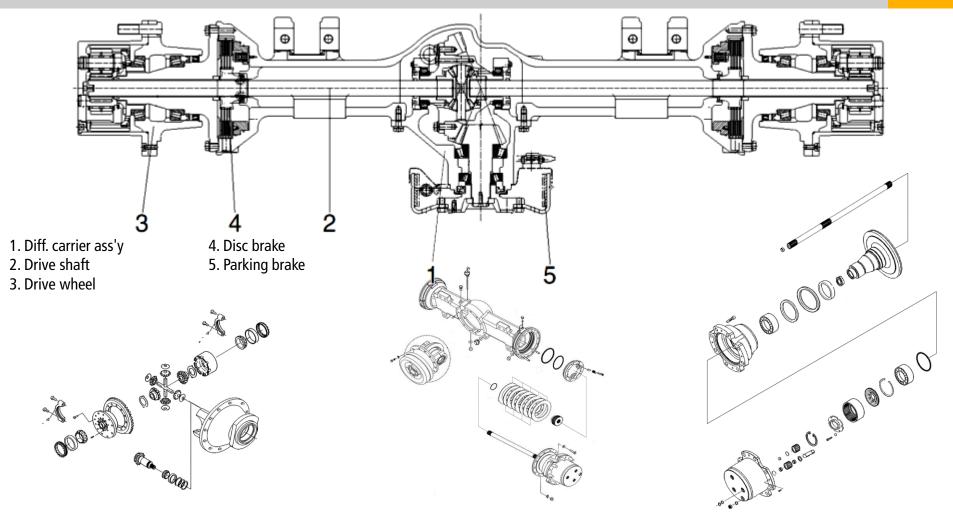
Transmission display codes – during AEB-mode

Symbol	meaning	remarks	FT	transmission temperature not in defined range during calibration	Transmissions stays in neutral, you have to restart the TCU (ignition off/on)
PL	AEB - Starter is plugged at the		FB	operating mode not NORMAL or	Transmissions stays in neutral, you have to
om.	diagnostic plug		гъ	transmission temperature sensor	restart the TCU (ignition off/on)
ST KAKE	AEB-Starter-button is pressed Calibrating clutch KAKE, KV or KR	KA, KB for 2 gear transmission		defective or storing of Calibrated values	(ignition official)
KV,KR	resp.	KC, KD, KE for 3 gear transmission		to EEPROM-has failed.	
_ and Kx	wait for start, initialization of clutch Kx, x: 1, 2, 3, 4, V, R	ice, ice, ice is get i unishission	FO	Outputspeed_not_zero	Transmissions stays in neutral, you have to restart the TCU (ignition off/on)
\equiv and Kx	fast fill time determination of clutch Kx		FN	Shift lever not in Neutral position	Transmissions stays in neutral, you have to restart the TCU (ignition off/on)
= and Kx	compensating pressure determination of clutch Kx		FP	Parkbrake_not_applied	Transmissions stays in neutral, you have to restart the TCU (ignition off/on)
ОК	calibration for all clutches finished	Transmissions stays in neutral, you have to restart the TCU (ignition off/on) after removing AEB-Starter	STOP	AEB - Starter was used incorrect or is defective. Wrong device or wrong cable	Transmissions stays in neutral, you have to restart the TCU (ignition off/on)
STOP	AEB canceled (activation stopped)	Transmissions stays in neutral, you have to restart the TCU (ignition off/on)		used	
STOP and Kx	AEB stopped, clutch Kx can't be calibrated	Transmissions stays in neutral, you have to restart the TCU (ignition off/on)			
Spanner and Kx	Kx couldn't be calibrated, AEB finished	Transmissions stays in neutral, you have to restart the TCU (ignition off/on)			
ΔE	engine speed too low, ⇒ raise engine speed				
VΕ	engine speed too high, ⇒ lower engine speed				
ΔΤ	transmission oil temperature too low, ⇒ heat up transmission				
∇ T	transmission oil temperature too high ⇒ cool down transmission				

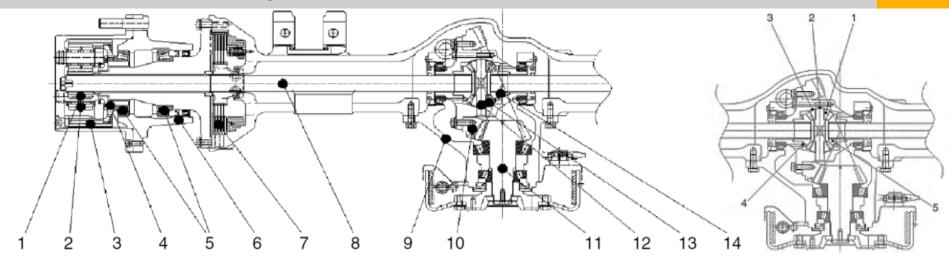
(2) ADDrevia) Addreviations					
OC	: Open circuit					
SC	: Short circuit					
OP mode	: Operating mode					
TCU	: Transmission control unit					
EEC	: Electronic engine controller					
PTO	: Power take off					


Transmission display codes – during Inchpedal calibration

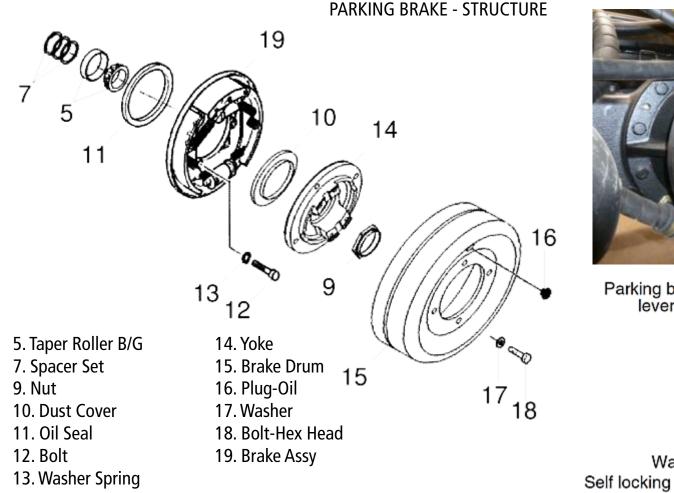
Symbol	meaning	remarks
Ib↑	push down the pedal slowly until endposition is reached and hold this position	
IP Î	Release the pedal slowly until endposition is reached	
IP □ blinkt	A problem occurred, release the pedal slowly until endposition is reached	If the expected enposition could not be reached, release the pedal and try again
OK	Finished inchpedal calibration successful	
FN and Stop	Shift lever not in Neutral position	Calibration is aborted
FS and Stop	sensor supply voltage AU1 is out of the specified range	Calibration is aborted
FO and Stop	Outputspeed is not zero	Calibration is aborted
SL and Stop	sensor voltage below specified rangel	Calibration is aborted
SU and Stop	sensor voltage above specified rangel	Calibration is aborted
IL and Stop	sensor position for released pedal out of specified range	Calibration is aborted
IU and Stop	sensor position for pressed pedal out of specified range	Calibration is aborted
TO and Stop	time-out calibration, pedal not moved after calibration start	Calibration is aborted
DL and Stop	angle between pedalpositions released and pressed to small	Calibration is aborted
DU and Stop	angle between pedalpositions released and pressed to big	Calibration is aborted
FI and Stop	sensor signal 1 and 2 don't match together	Calibration is aborted

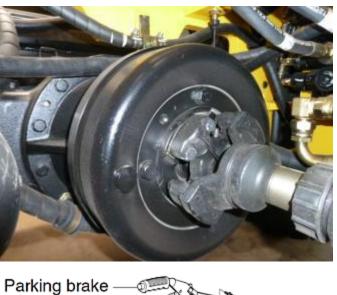

oc	: Open circuit
SC	: Short circuit
OP mod	e : Operating mode
TCU	: Transmission control unit
EEC	: Electronic engine controller
PTO	: Power take off

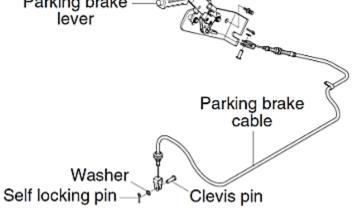
(2) Abbreviations


Front axle

Front axle structure


Front axle main components




No	Item	Specification
1	Inner carrier	2.2±0.3kgf • m (15.9±2.2bf • ft)
2	Spindle	12±0.5kgf · m (86.8±3.6lbf · ft)
3	Service piston	1.5±0.1kgf - m (10.8±0.7lbf - ft)
4	Adjuster nut	1.0±0.2kgf · m (7.2±1.4bf · ft)
5	Differential cap	16±0.5kgf - m (116±3.6lbf - ft)
6	Differential case	6.0±0.5kgf - m (43.4±3.6bf - ft)
7	Ring gear	13.5±0.5kgf · m (97.6±3.6bf · ft)
8	Differential carrier assembly	18.0±0.5kgf · m (130±3.6lbf · ft)
9	Wheel hub rolling resistant	3.0±0.3kgf · m (21.7±2.2bf · ft)
10	Parking brake	20.0±0.9kgf · m (144.7±6.5lbf · ft)
11	Brake drum	12.0±0.5kgf · m (86.8±3.6lbf · ft)

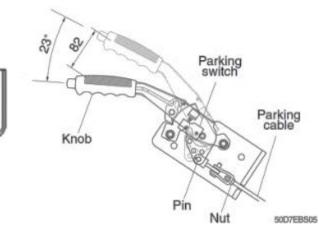
	Sun gear Planetary gear	8. Drive shaft			
	nner gear	9 Differential carrier assy 10. Ring gear			
	nner gear carrier		ion shaft		
	apered bearing	12. Spi			
6. H	lub assy	13. Differential pinion gear			
7. Disk brake		14. Differential side gear			
No	Item	Unit	Specification		
1	Differential pinion gear inner diameter	mm(in)	20.000 - 20.021(0.787-0.788)		
2	Spider outer diameter	mm(in)	19.959 - 19.980(0.786~0.787)		
3 Pinion gear washer		mm(in) 1.92 - 2.08(0.076~0.082)			
4	Side gear washer	mm(in)	1.95 - 2.05(0.077~0.081)		
5	Side gear		•		

Hand brake system

Hand brake system - PARKING BRAKE - ADJUSTMENT

The following procedures should be applied for brake shoe adjustment:

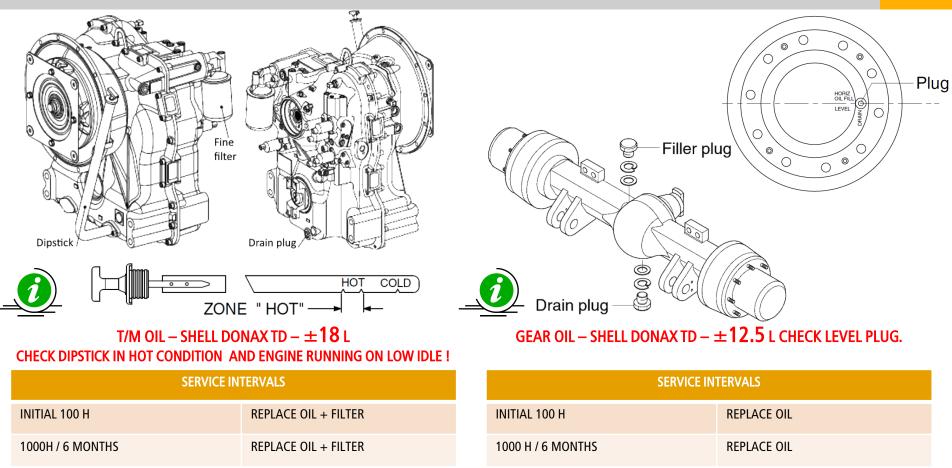

1. Open rubber plug (3).


2. Adjuster should be turned according to *arrow direction* until occurring drum drag.

3. Adjuster should be turned *opposite direction* of the arrow sign by *4* clicks.

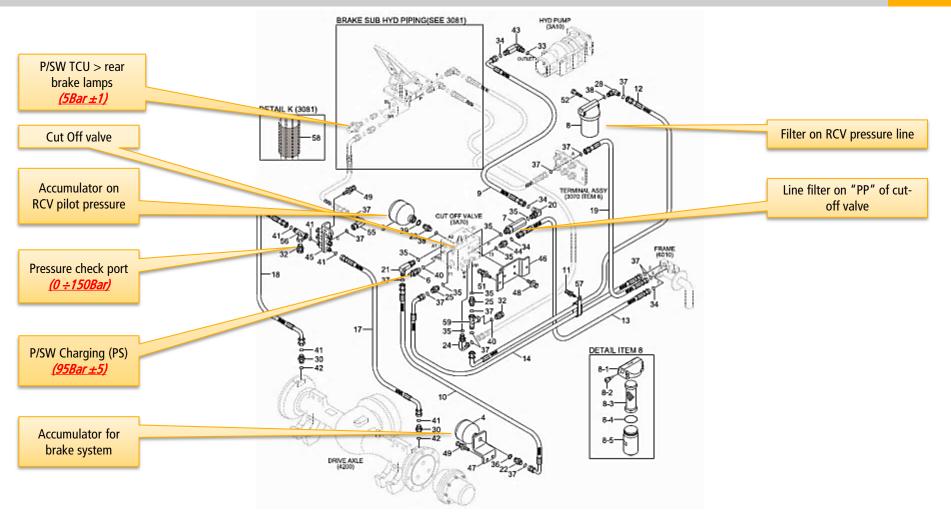
4. At that case, lining clearance is 0.1~0.25 mm.

5. Check drum drag after operating lever several times. (Repeat from beginning if drag is occurred)

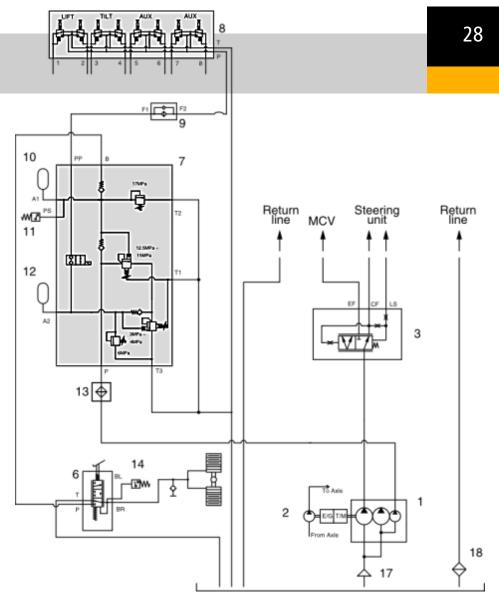


Apply loctite #271 or #277 to thread of bolt (2) and then assemble it with tightening torque of 11~13kgf..m (79.6~94.0lbf..ft).

Power train line – maintenance



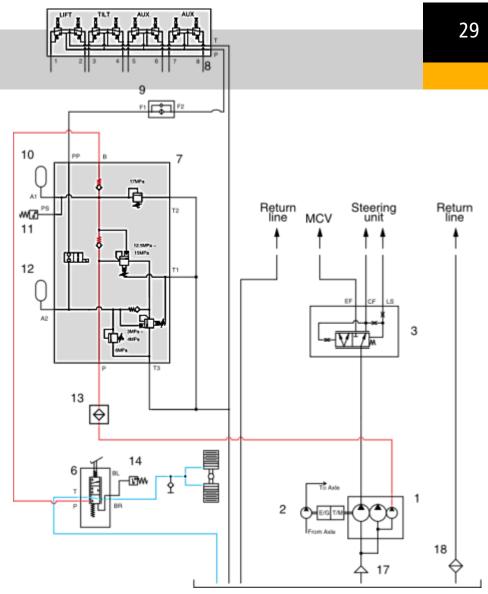
Do not touch hot components or allow hot oil to contact your skin. Dispose of used oil in locally approved manner



BRAKE SYSTEM OUTLINE

BRAKE HYDRAULIC CIRCUIT

- 1. Main pumps.
- 2. Brake pump.
- 3. Priority valve.
- 6. Brake valve.
- 7. Cut-off valve.
- 8. RCV.
- 9. Line filter.
- 10. Accumulator (Brake system).
- 11. Pressure switch (Brake system).
- 12. Accumulator (RCV).
- 13. Line filter.
- 14. Pressure switch. (Stop Lamps/TCU input)
- 17. Strainer.
- 18. Return filter.



BRAKE HYDRAULIC CIRCUIT

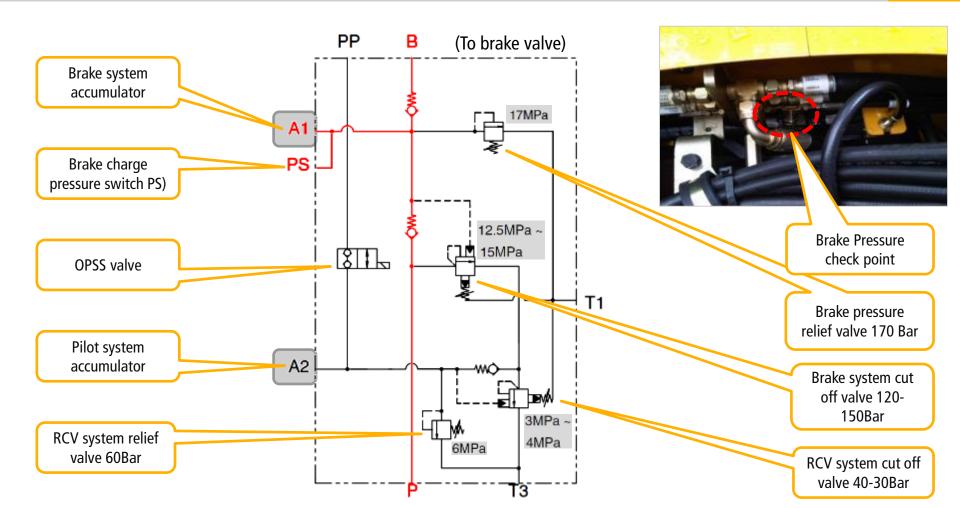
SERVICE BRAKE RELEASED

- When the pedal of brake valve(6) is released, the operating force is eliminated by the force of the spring, and the spool is returned.

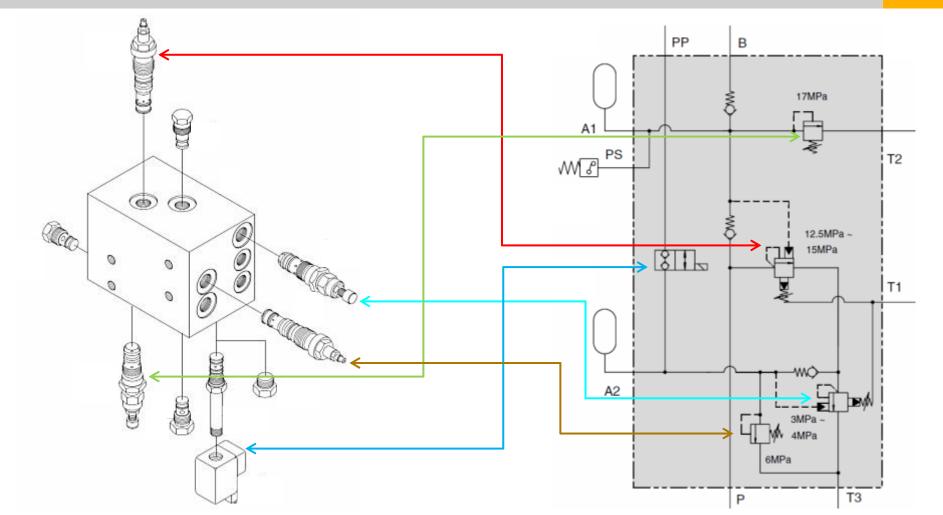
- When the spool removes up, the drain port is opened and the hydraulic oil in the piston of axles return to the tank. Therefore the service brake is kept released.

BRAKE HYDRAULIC CIRCUIT

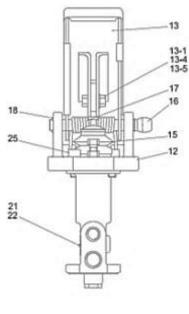
SERVICE BRAKE OPERATED

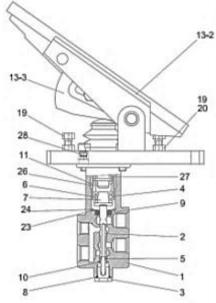

- When the pedal of brake valve(6) is pressed, the operating force overcomes the force of the spring and is transmitted to the spool.

- When the spool moves down, the inlet port is opened, and at the same time the hydraulic oil controlled by the cut-off valve(7) enters the pistons in the front axle.

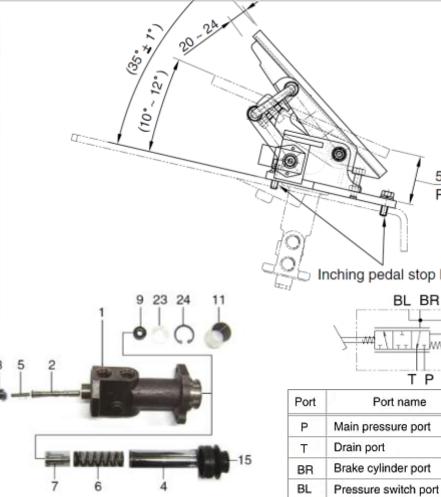

Therefore, the service brake is applied.

CUT-OFF VALVE – HYDRAULIC DIAGRAM

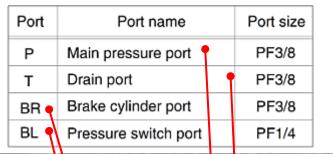

CUT-OFF VALVE – STRUCTURE

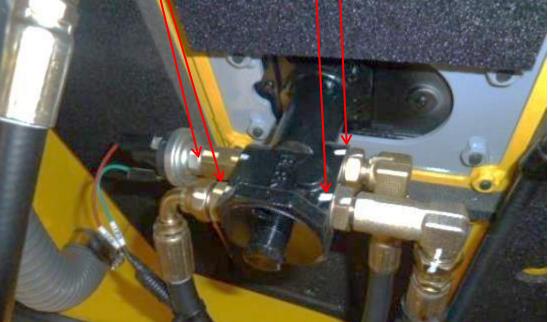


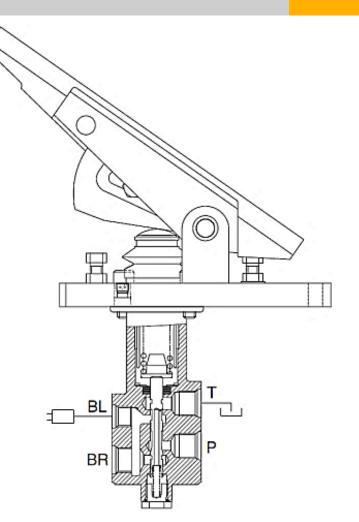
CUT-OFF VALVE – VIEW

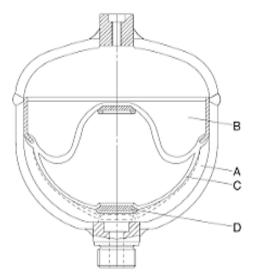


BRAKE VALVE - STRUCTURE



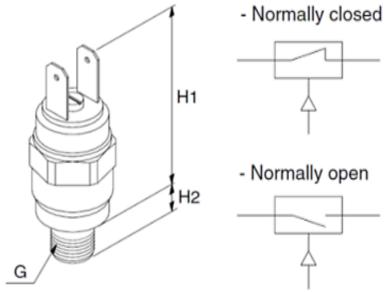



- 1. Body 2. Spool 3.Plug 4. Holder(piston) 5. Lower spring 6. Main spring 7. Spring retainer
- 8. O-ring
- 9.0il seal
- 10 .Snap ring
- 11. Du bushing 12. Pedal plate 13. Pedal assembly 13-1. Pedal 13-2. Rubber 13-3. Lock plate 13-4. Hexagon bolt 13-5. Plate washer 15. Bellows 16. Lock pin 1
- 17. Torsion spring 18. Snap ring 19. Hexagon bolt 20. Hexagon nut 23. Plain washer 24. Snap ring 25. Bolt 26. Taper plug


BRAKE VALVE - STRUCTURE

BRAKE ACCUMULATOR and PRESSURE SWITCH

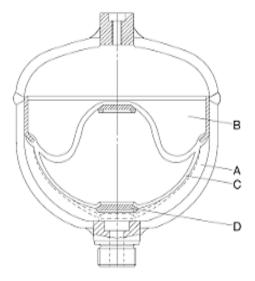
ltem	81L1-0004		
Diameter	110mm		
Mounting height	164mm		
Nominal volume	0.7 t		
Priming pressure	50kgf/cm ²		
Operating medium	Oil		
Operating pressure	Max 150kgf/cm ²		
Thread	M18×1.5		
Priming gas	Nitrogen		
A Fluid portion	C Diaphragm		
B Gas portion	D Valve disk		


The accumulator consists of a fluid portion (A) and a gas portion (B) with a diaphragm (C) as a gas-tight dividing element. The fluid portion (A) is connected to the hydraulic circuit, causing the diaphragm accumulator to be filled and the gas volume to be compressed as the pressure rises.

When the pressure falls, the compressed gas volume will expand, thus displacing the accumulated pressure fluid into the circuit.

The diaphragm bottom contains a valve disk (D) which, if the diaphragm accumulator is completely empty, closes the hydraulic outlet, thus preventing damage to the diaphragm.

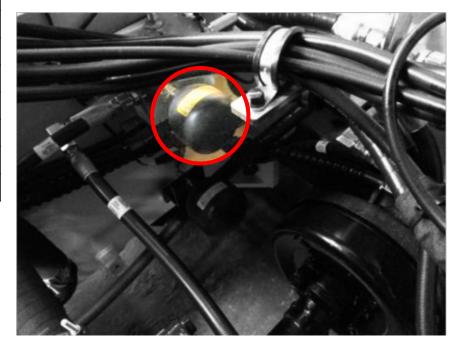
For safety reasons the accumulators need to be replaced as a whole if damaged


Technical data

ltem	Туре	Medium	G	H1 mm	H2 mm	Adjusting range kgf/cm²	Adjusting pressure kgl/cm²	Voltage V
Charging	NC	Oil	M12×1.5	46	9	50 ~ 150	95 ± 5	Max 42
Brake stop	NO	Oil	M12×1.5	46	9	1~10	5 ± 1	Max 42
NC : Normally closed			NO : Norm	ally ope	an			

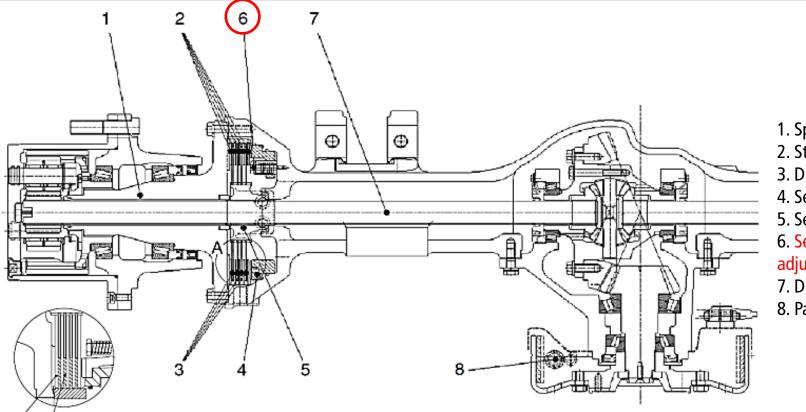
When working on the braking system, always make sure that there is absolutely no pressure in the system. Even when the engine is switched off there will be some residual pressure in the system.

RCV ACCUMULATOR



ltem	31E3-3187
Diameter	90 mm
Mounting height	124 mm
Nominal volume	350 сс
Priming pressure	15 kg/cm ²
Operating medium	oil
Operating pressure	max 170 kg/cm ²
Thread	M8x1.5; G1/2
Priming gas	Nitrogen

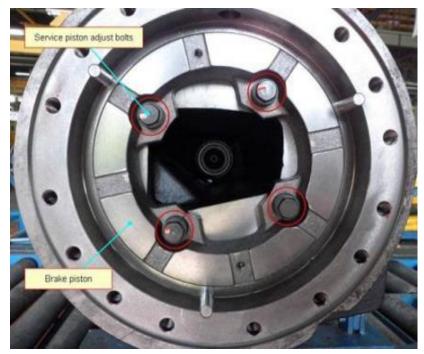
The accumulator consists of a fluid portion (A) and a gas portion (B) with a diaphragm (C) as a gas-tight dividing element. The fluid portion (A) is connected to the hydraulic circuit, causing the diaphragm accumulator to be filled and the gas volume to be compressed as the pressure rises.


When the pressure falls, the compressed gas volume will expand, thus displacing the accumulated pressure fluid into the circuit.

The diaphragm bottom contains a valve disk (D) which, if the diaphragm accumulator is completely empty, closes the hydraulic outlet, thus preventing damage to the diaphragm.

BRAKES (WHEEL)

2

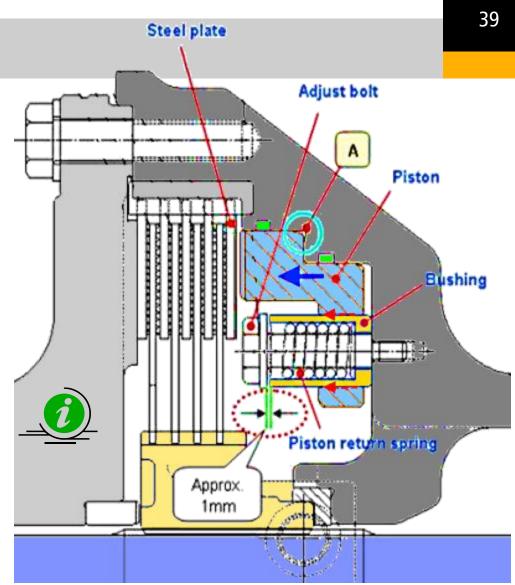


Spindle
 Steel plate
 Disk plate
 Service piston
 Service collar
 Service piston

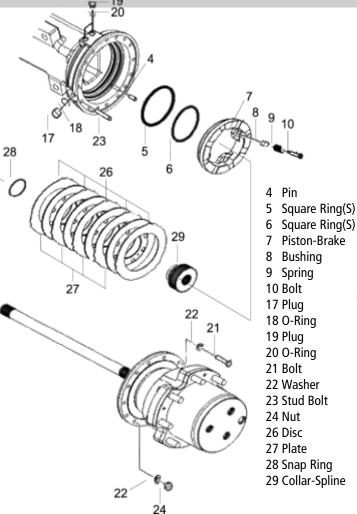
 adjust bolt
 Drive shaft
 Parking brake

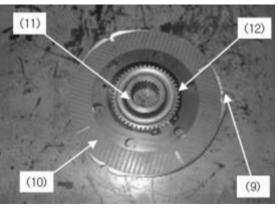
Sealed up structure of hydraulic multi-disk brake system secures good brake performance even in the high humid or dusty area. Because it is possible to use the brake semi-permanently, there is no need to maintain its lining as drum type brake do. Also with self-adjust of friction plate clearance, it's easy to prevent the brake performance drop due to friction material wear.

BRAKES (WHEEL)

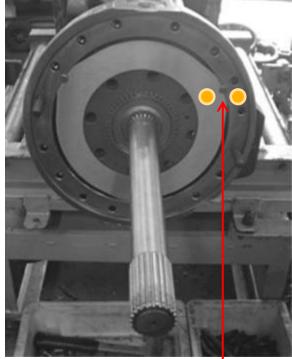


• Condition that brake discs become worn out.

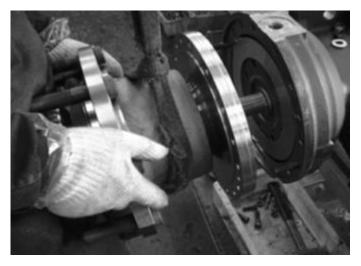

Then, the distance between disc plate and piston will be increased, which will also request piston to travel more for brake activation.


But, before piston moves to left more, travel distance for bushing is quite limited and will soon stopped.

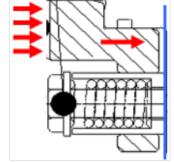
In this stage, piston will be slipped on bushing in order to move left more for brake activation thanks to brake oil pressure



BRAKES (WHEEL)



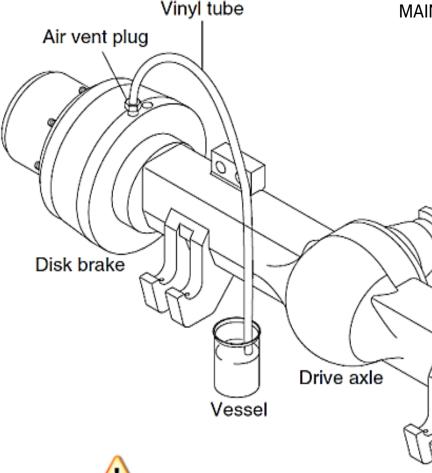
- Assemble 5 plates(9) and 4 disks(10) with spline collar(11) and then lock with snap ring (12). Disc must be assembled after dipping during 12 hours in axle oil.
 - Install assembled spline collar to the axle housing with the drive shaft. Before assembling, clean all of the parts completely and remove burrs.
 - After assembling, confirm that the clearance between the outer plate and the axle housing surface is 2.1~2.6mm (0.08~0.10in).



BRAKES (WHEEL) - ASSEMBLING AND INSPECTION

- Push pre-assembled wheel hub to the axle housing until contact take places.

-Tighten the torque plate until the wheel hub assembly has the same rolling resistance as before.


- Apply loctite #271 or #277 to thread of bolt and then assemble it with tightening torque of $18{\sim}22kgf^{\rm cm}(130.2{\sim}159.1lbf^{\rm cft}).$

Here is what we have to do for the disc replacement.In order to take out the piston, we have to un-tight the (4)bolts.

•Then, we have bushing and piston that are assembled together.

• We make the piston **move to the right** so that it can **be flat with bushing**. (See left pic). If not, there will be no initial clearance between piston and plates.

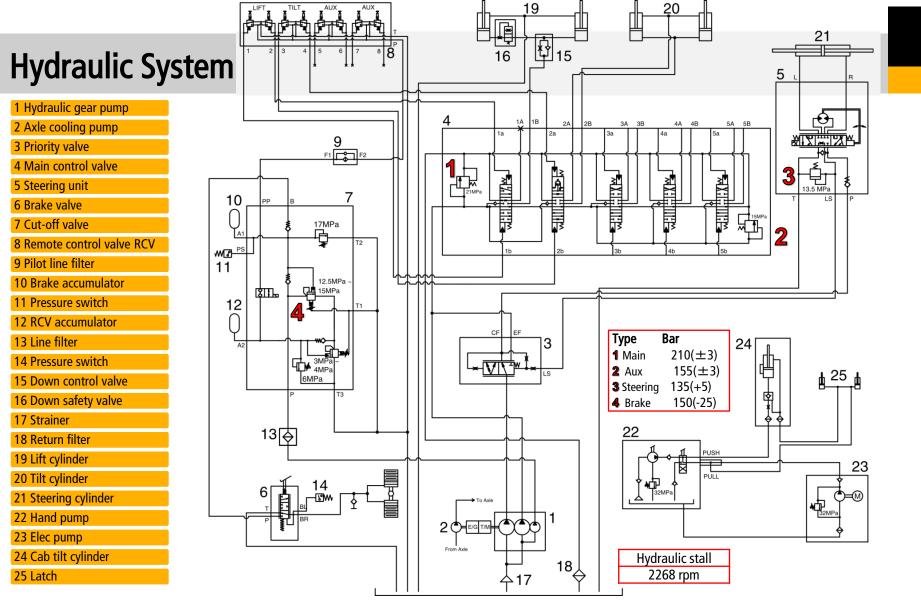
BRAKES

MAINTENANCE

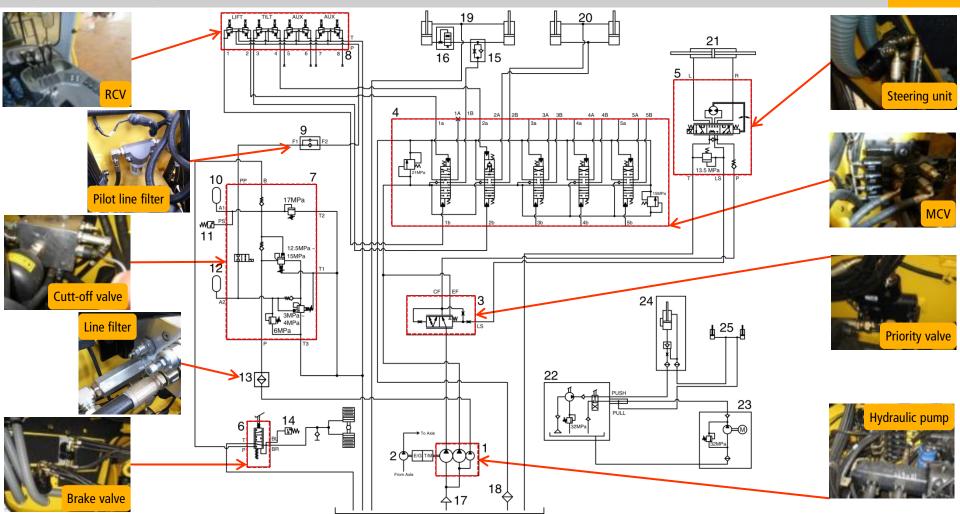
- Air bleeding should be performed by two persons: One rides on truck for depressing and releasing brake pedal The other person is on the ground and removes cap from air vent plug on wheel cylinder.
- 2. Block the front wheel securely and apply parking brake.
- 3. Start the engine.
- 4. Attach a vinyl tube to air vent plug and immerse other end of tube into a vessel filled with hydraulic oil.
- 5. Loosen air vent plug by turning it 3/4 with a wrench. Depress brake pedal to drain oil mixed with air bubbles from plug hole.
- 6. Depress brake pedal until no air bubbles come out of air vent plug hole.
- 7. After completion of air bleeding, securely tighten air vent plug. Install cap on plug.
- 8. Same way for the opposite side.

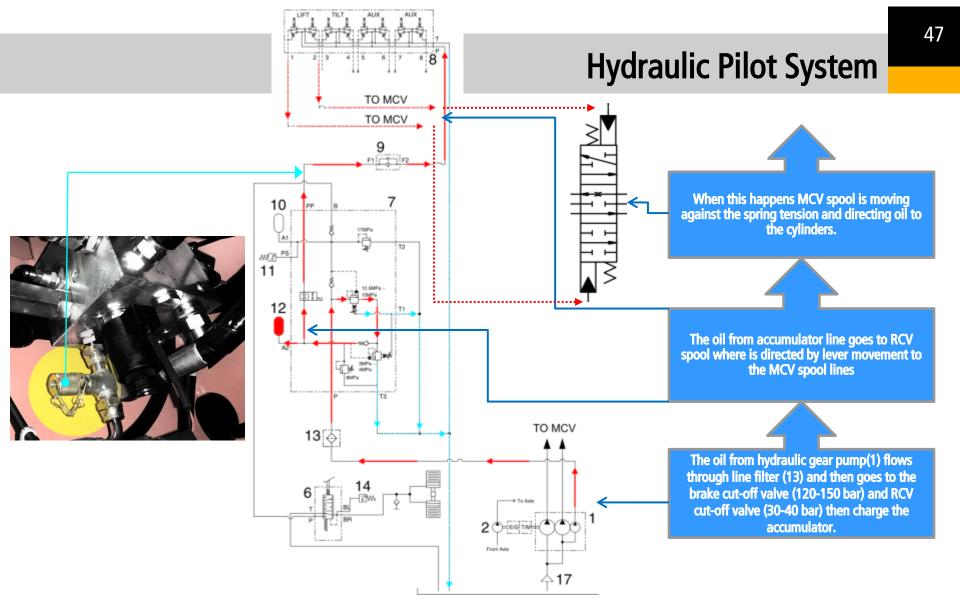
Do not touch hot components or allow hot oil to contact your skin. Dispose of used oil in locally approved manner

Hydraulic Systems

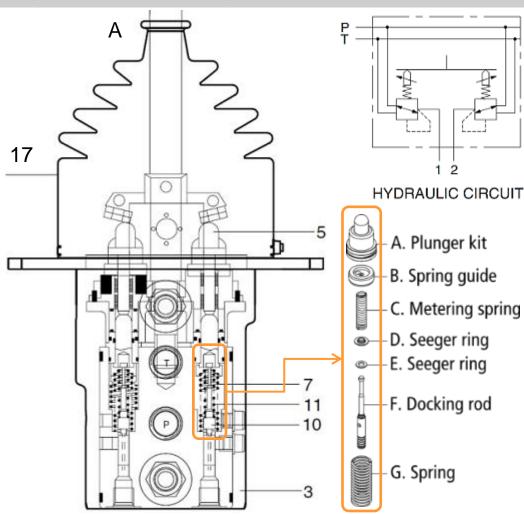

Brake circuit – see chapter Wet Brake System

Main hydraulic circuit


• Pilot circuit


Power steering circuit

Cabin tilting system



Hydraulic System - components

Hydraulic Pilot System - RCV OPERATION

Hydraulic functional principle

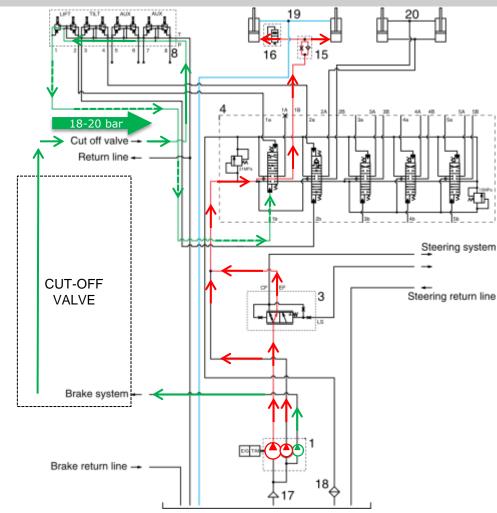
Pilot devices with end position locks operate as direct operated pressure reducing valves.

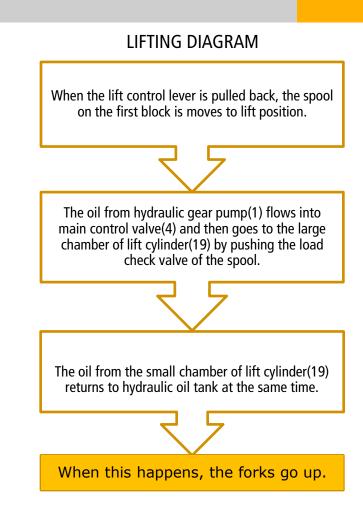
They basically comprise of control lever(A), two pressure reducing valves, body(3) and locks.

Each pressure reducing valve comprises of a plunger kit(5), a metering spring(7) and a spring(11).

At rest, control lever(A) is held in its neutral position by return springs(11). Ports(1, 2) are connected to tank port T.

When control lever(A) is deflected, plunger kit(5) is pressed against return spring(11) and metering spring(7).

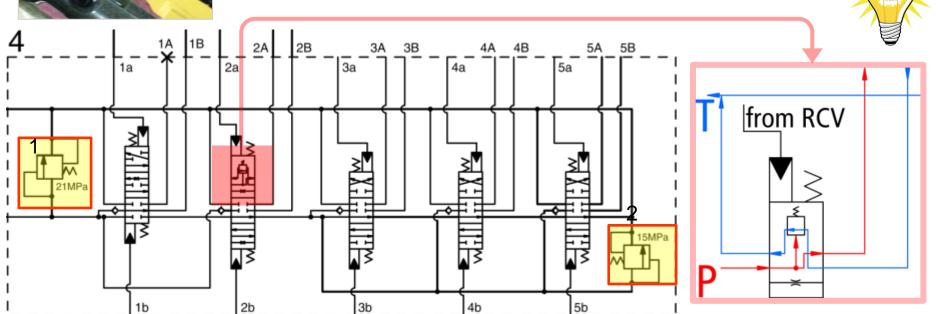

Metering spring(7) initially moves docking rod(10) downwards and closes the connection between the relevant port and tank port T. At the same time the relevant port is connected to port P. The control phase starts as soon as docking rod(10) finds its balance between the force from metering spring(7) and the force, which results from the hydraulic pressure in the relevant port(ports 1, 2).

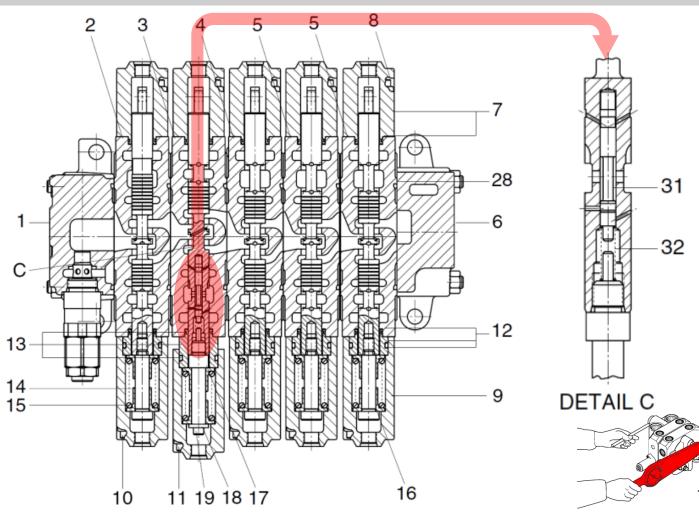

Due to the interaction between docking rod(10) and metering spring(7) the pressure in the relevant port is proportional to the stroke of plunger(5) and hence to the position of control lever(A).

This pressure control which is dependent on the position of the control lever and the characteristics of the control spring permits the proportional hydraulic control of the main directional valves and high response valves for hydraulic pumps.

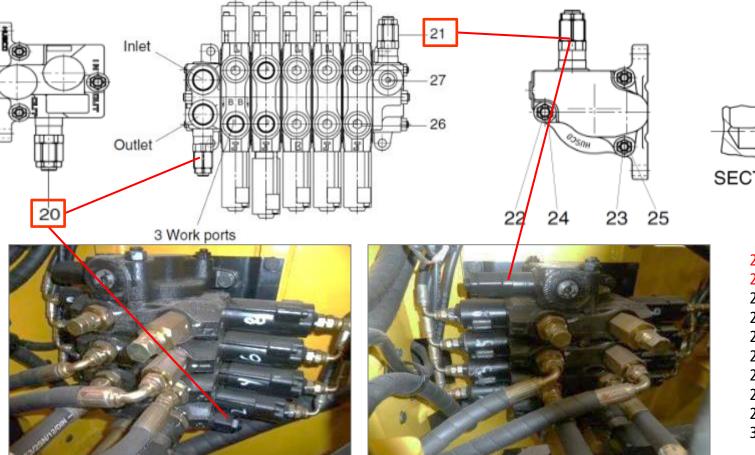
A rubber bellows(17) protects the mechanical components in the housing from contamination.

Hydraulic Pilot System - RCV OPERATION



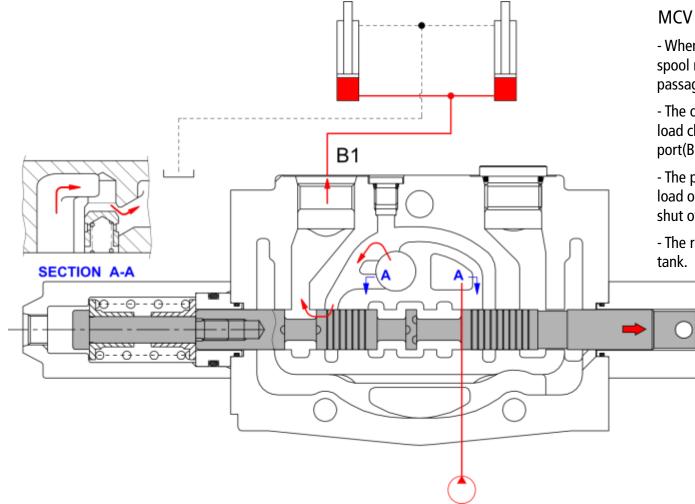

Hydraulic System – MCV Diagram

T-connector for load pressure sensor and possibility to install main pressure check point


TILT LOCK VALVE

MCV STRUCTURE

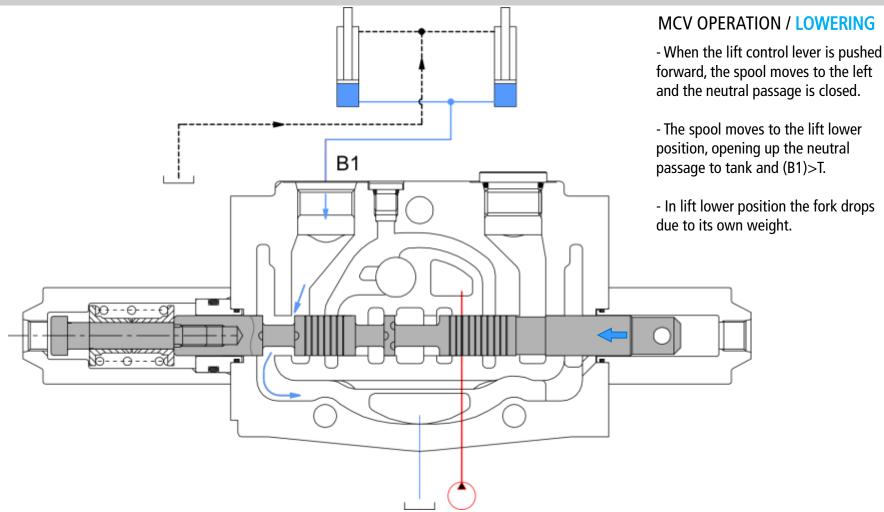
Inlet section assy
 Spool section assy(Lift)


3. Spool section assy(Tilt) 4. Spool section assy(Aux) 5. Spool section assy(Aux) 6. Outlet section assy 7. Spool cap 8. Cap screw 9. Spool cap 10. Cap screw 11. Cap screw 12. Retainer 13. Retainer 14. Spring set 15. Spring 16. Screw 17. Spool end 18. Washer 19. Cap screw 28. O-ring 31. Piston 32. Spring Tightening torque sequence: All nuts - first 13.5 Nm 11/16" - final 65.0±6.7 Nm - final 100 \pm 10 Nm 3/4" Check proper spools movement

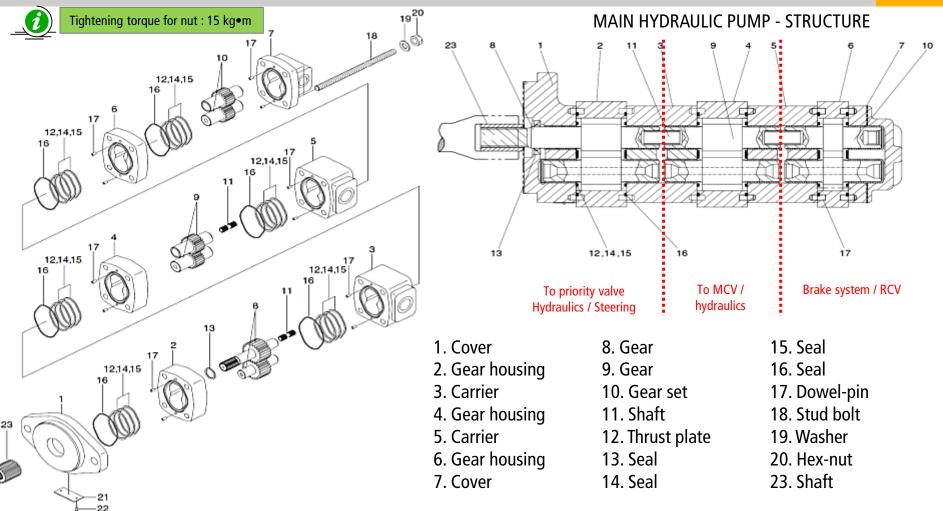
29 30

MCV STRUCTURE

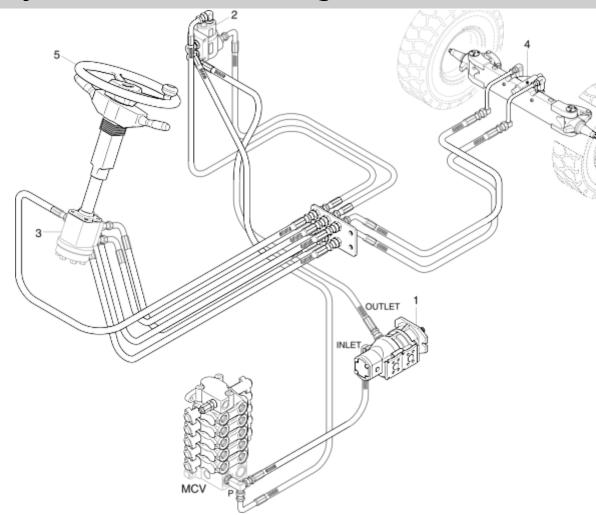
20. Main relief valve assy.
21. Aux relief valve assy.
22. Tie rod
23. Tie rod
24. Special nut
25. Special nut
26. Plug
27. Plug
29. Poppet
30. Spring


MCV OPERATION / LIFTING

- When the lift control lever is pulled back, the spool moves to the right and the neutral passage is closed.


- The oil supplied from the pump pushes up the load check valve(1) and flow into lift cylinder port(B1).

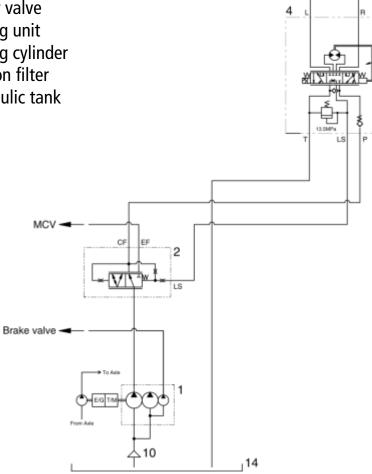
- The pump pressure reaches proportionally the load of cylinder and fine control finished by shut off of the neutral passage.


- The return oil from cylinder flows into the tank.

Hydraulic System – PUMP

Hydraulic Power Steering – overview

- The steering system for this machine is composed of steering wheel assembly, steering unit, steering cylinder, trail axle and piping.

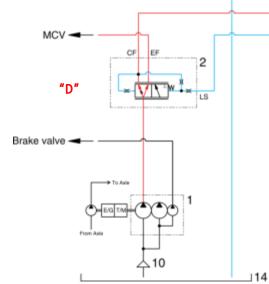

-The steering force given to the steering wheel enters the steering unit through the steering column.

- The required oil flow is sensed by the LS system of the Orbitrol , and pressurized oil delivered from the hydraulic pump flowing through the priority valve is fed to the steering cylinder.

- The force produced by the steering cylinder moves the knuckle of steering tires through the intermediate link.

Hydraulic Power Steering – diagram

- 1. Hydraulic gear pump
- 2. Priority valve
- 4. Steering unit
- 6. Steering cylinder
- 10. Suction filter
- 14. Hydraulic tank



NEUTRAL:

-The steering wheel is not being operated, so control spool(G) does not move.

-The oil from hydraulic gear pump(1) enters the port P of priority valve(2) and the inlet pressure oil moves the spool(D) to the left.

- Oil flow into LS port to the hydraulic tank(14), so the pump flow is routed to the main control valve through the EF port.

6

13.5MPa

"G

Hydraulic Power Steering – diagram

2

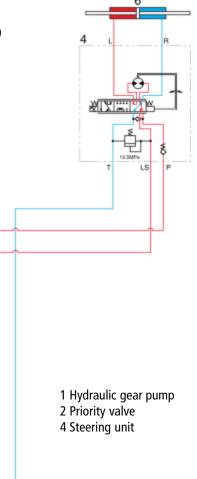
LEFT TURN

When the steering wheel is turned to the left, the spool(G) within the steering unit(4) connected with steering column turns in left hand direction.

At this time, the oil discharged from the pump flows into the spool(G) the steering unit through the spool(D) of priority valve and flows the gerotor(H).

Oil flow from the gerotor flows back into the spool(G) where it is directed out the left work port(L).

Oil returned from cylinder returns to hydraulic tank(14).


When the above operation is completed, the machine turns to the left.

MCV -

Brake valve -

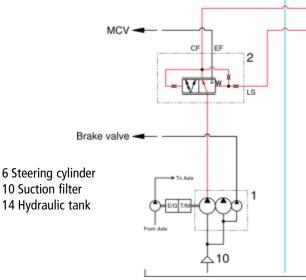
From Arb

스10

114

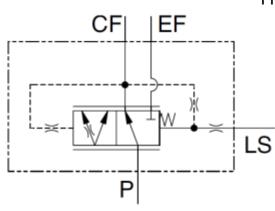
RIGHT TURN

When the steering wheel is turned to the right, the spool(G) within the steering unit(4) connected with steering column turns in right hand direction.


At this time, the oil discharged from the pump flows into the spool(G) the steering unit through the

spool(D) of priority valve and flows the gerotor(H).

Oil flow from the gerotor flows back into the spool(G) where it is directed out the right work port(R).


Oil returned from cylinder returns to hydraulic tank(14).

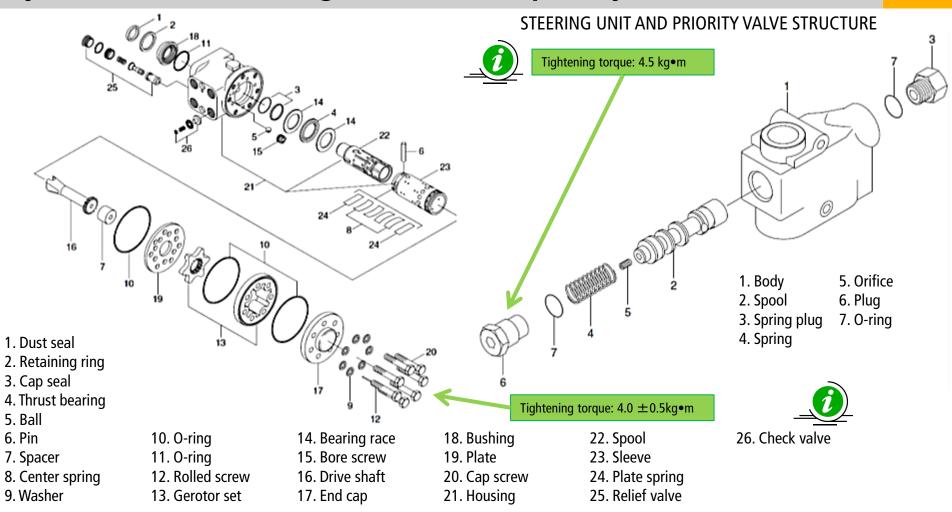
When the above operation is completed, the machine turns to the right.

114

Hydraulic Power Steering – priority valve

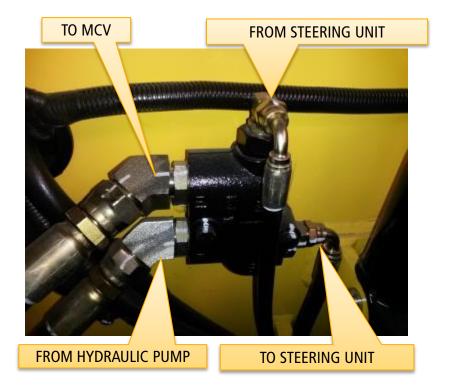
OPERATION

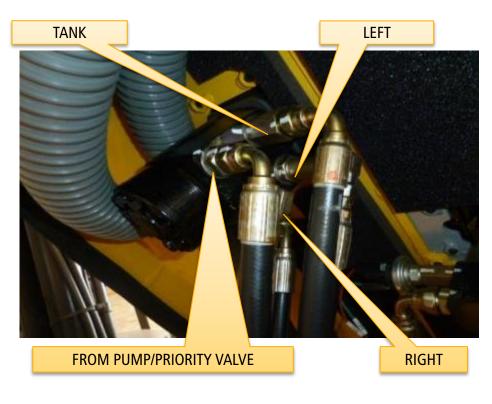
- The oil from the hydraulic gear pump flows into the priority valve.


- The priority valve supplies a flow of oil to the steering and MCV system.

- The steering flow is controlled by the steering unit to operate the steering cylinder.

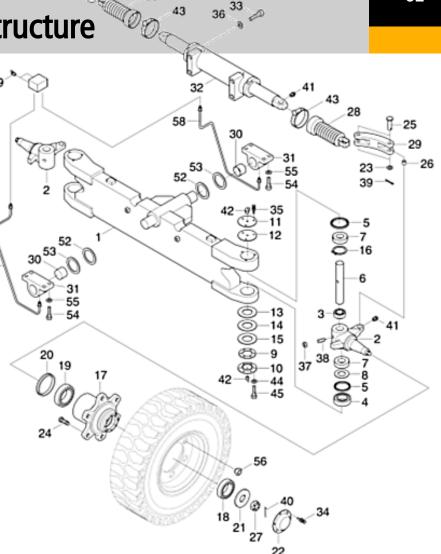
- The remain oil flow from the pump flows to the main control valve (MCV).




Hydraulic Power Steering – orbitrol and priority v/v

Hydraulic Power Steering – orbitrol and priority v/v

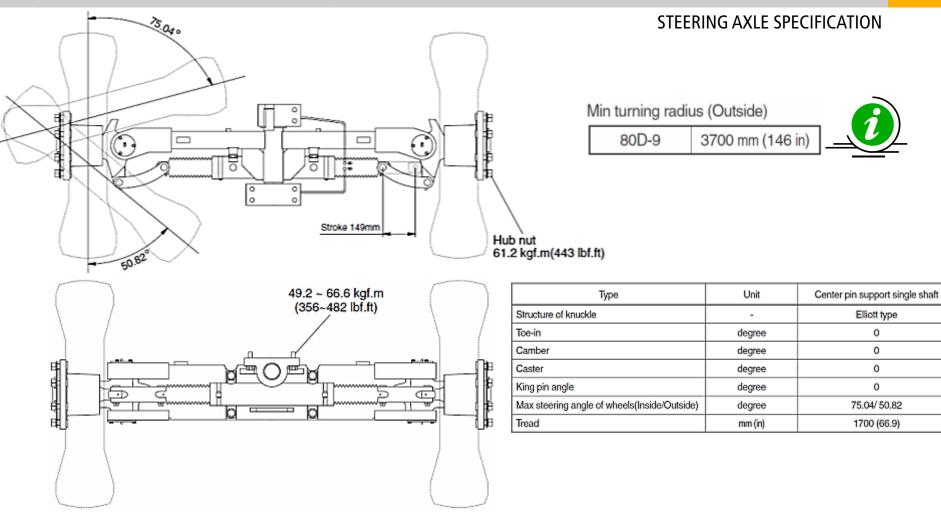
STEERING UNIT AND PRIORITY VALVE LOCATION

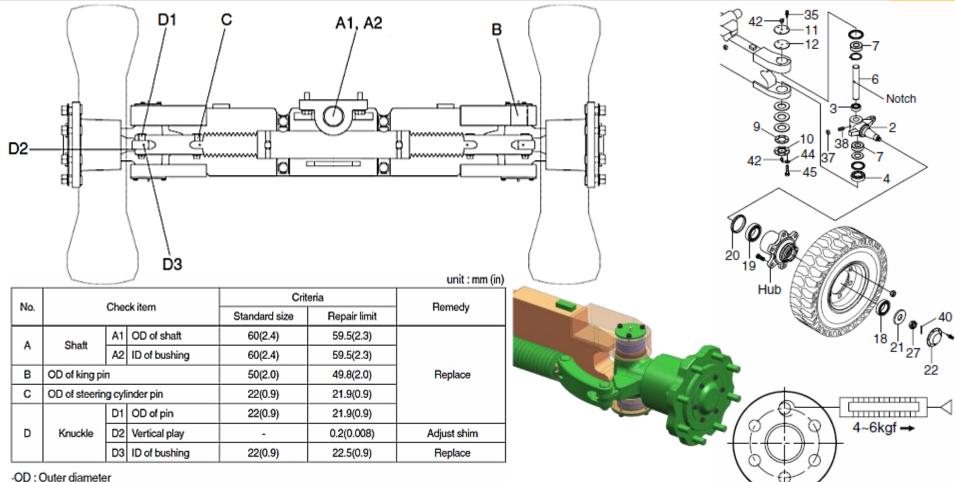


Hydraulic Power Steering – rear axle structure

1 Steering Axle Wa 2 Knuckle 3 Taper roller bearing 4 Taper roller bearing 5 Oil seal 6 King pin 7 Spacer 8 Spacer 9 Gasket 10 Cover 11 Cover 12 Gasket 13 Shim (0.5 t) 14 Shim (0.2 t) 15 Shim (0.1 t) 16 Retaining ring 17 Hub 18 Taper roller bearing 37 Hexagon nut 19 Taper roller bearing 38 Set Screw

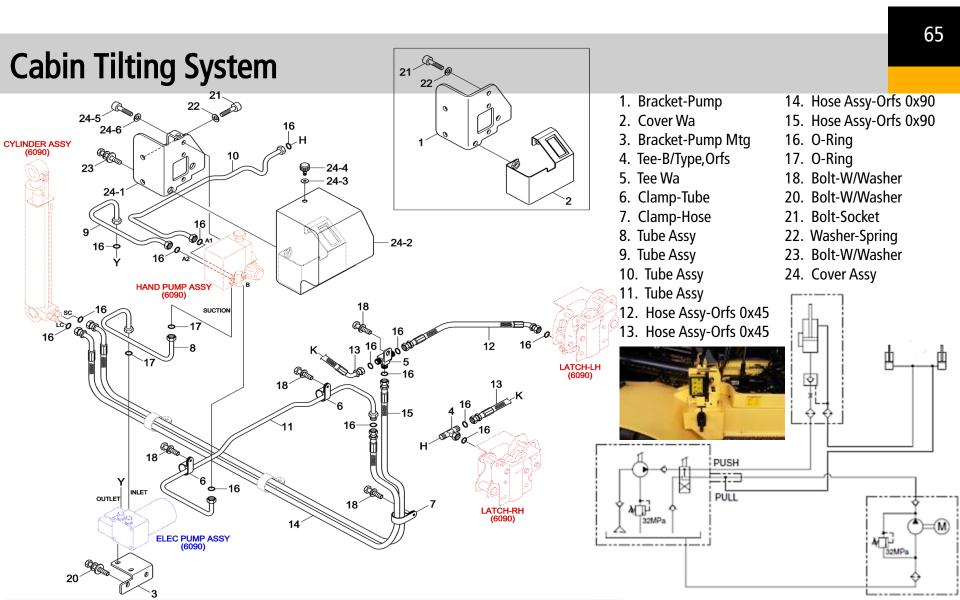
20 Oil seal 21 Washer 22 Hub cap 23 Special washer 24 Hub bolt 25 Link pin 26 Bushing 27 Slotted nut 28 Steer cylinder boot 29 Intermediate link 30 Bushing 31 Support 32 Cylinder Assy 33 Hexagon bolt 34 W/Washer bolt 35 W/Washer bolt 36 Hardened washer

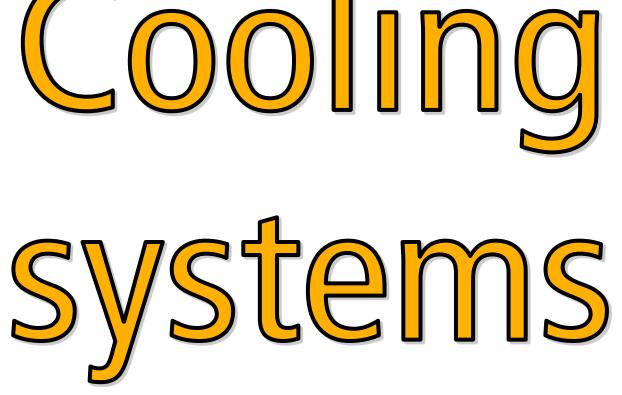

39 Split pin 40 Split pin 41 Grease nipple 42 Grease nipple 43 Hose clamp 44 Plain washer 45 Hexagon bolt 52 Thrust washer 57 53 Thrust washer 54 Hexagon bolt 55 Hardened washer 56 Hub nut, M22x1.5 57 Front pipe Assy 58 Rear pipe Assy 59 Grease nipple


28

62

Hydraulic Power Steering – rear axle

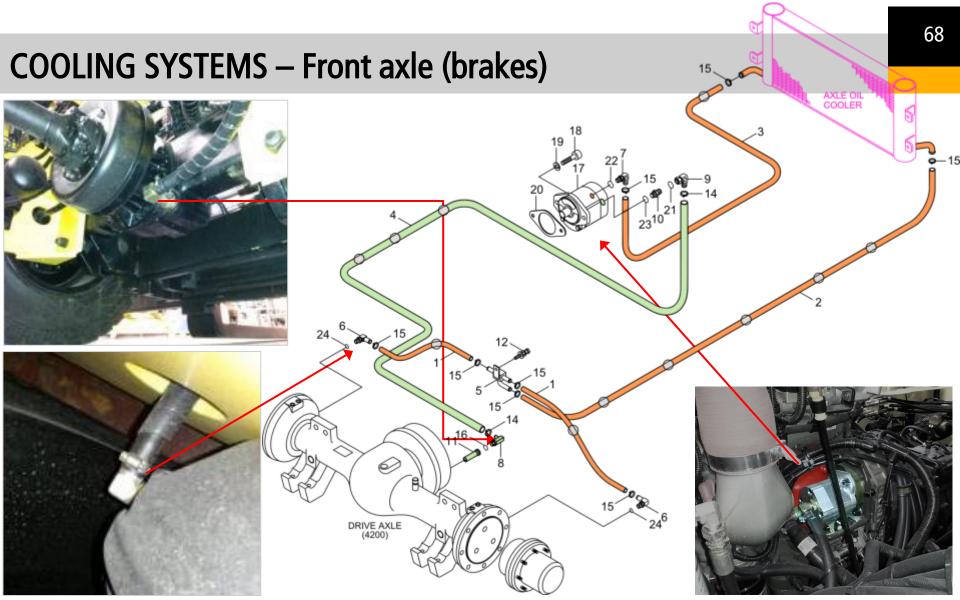


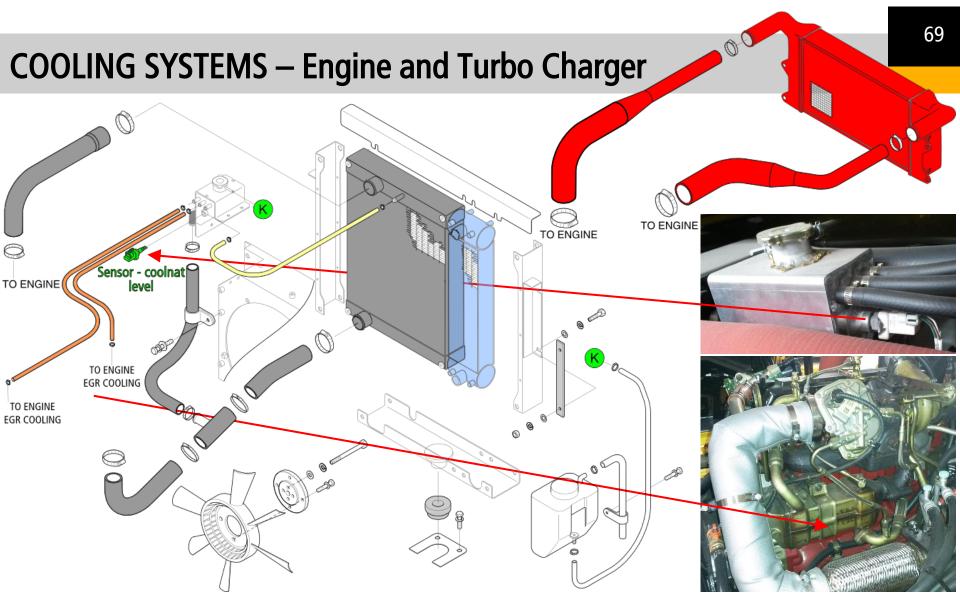

Hydraulic Power Steering – rear axle

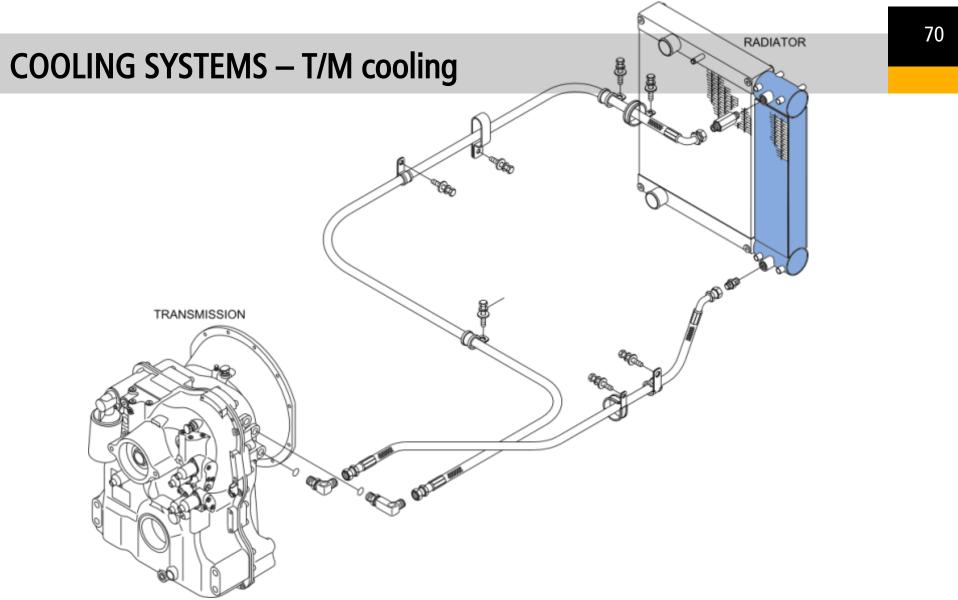
OD : Outer diameter

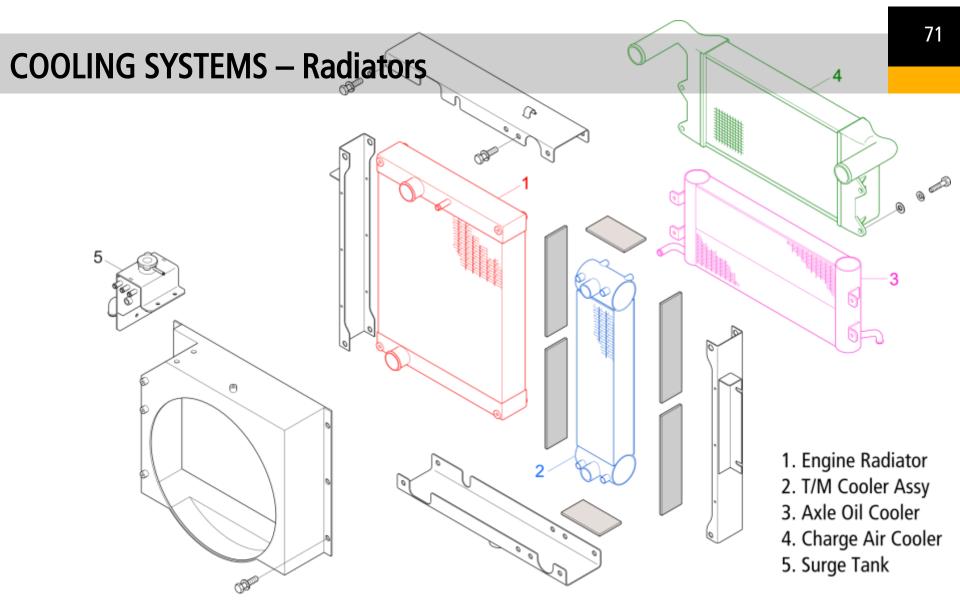
ID : Inner diameter

COOLING SYSTEMS

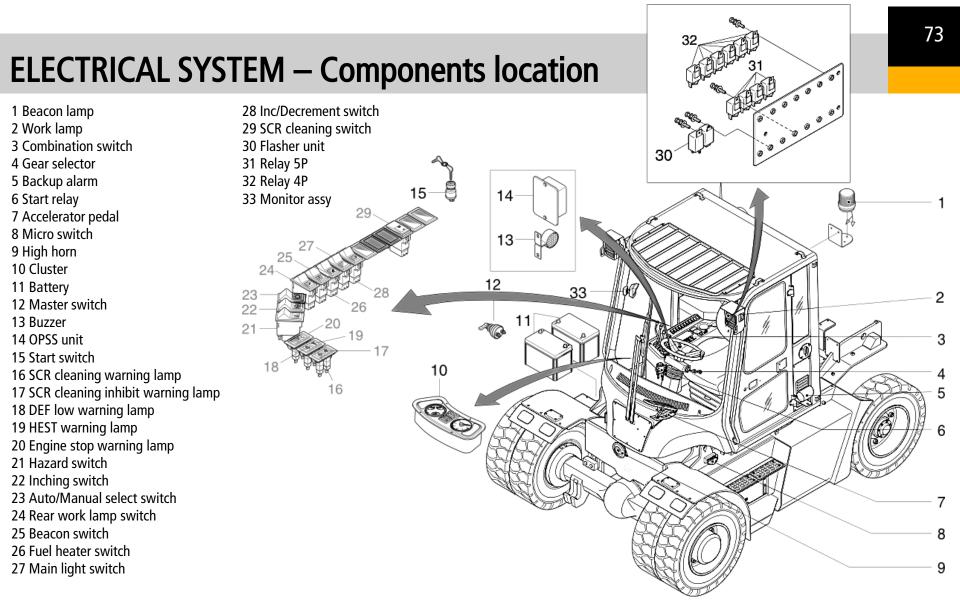

Front axle cooling system


Engine cooling system


- Charger cooling system
- EGR cooling system


Transmission cooling system

Radiators



ELECTRICAL SYSTEM – Cluster

ELECTRICAL SYSTEM – Cluster

NO	Symbol	Name	Description
1	\bullet	LEFT TURN LAMP	Illuminates when the left turn signal has been activated.
2		RIGHT TURN LAMP	Illuminates when the right turn signal has been activated.
3	≣D	HEAD LAMP	It is turned on once the driver activates the high beam mode of the headlight.
4	٩	T/M TEMP LAMP	Illuminates when the transmission oil temperature is high (above 107°C). Turn off the forklift, and notify your supervisor immediately.
5	B	E/G TEMP LAMP	Illuminates when the engine coolant temperature is high (above 104°C). Turn off the forklift, and let Cool.
6		FUEL EMPTY LAMP	Illuminates when a low fuel level. Refueling is urgently required.
7		BRAKE COOLING LAMP Not used	Illuminates when the brake oil temperature is too low. Turn off the forklift, and check out the cause.
8	(()(()((()((((()(((((((((((((BRAKE LAMP Not used	Illuminates when the brake fluid level is too low. Turn off the forklift, and check the level in the brake fluid reservoir.
9	\bigcirc	T/M FAIL LAMP	Illuminates when it indicates a transmission failure. If it is illuminated, turn off the forklift, and check out the cause.
10	+	ENGINE OIL PRESSURE LAMP	Illuminates when the engine oil pressure is too low. If it is illuminated with the engine running or when you are driving, this indicates a malfunction. Turn off the forklift, and check the engine oil level.

ELECTRICAL SYSTEM – Cluster

NO	Symbol	Name	Description		
11	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	FUEL HEATER LAMP	Illuminates when the hydraulic fluid temperature is below 20℃ or engine coolant temperature is below 10℃. If the engine coolant temperature is above 60℃ or hydraulic fluid temperature is above 45℃ the ignition switch is in the ON position, automatic fuel heating is canceled.		
12		WIF(WATER IN FUEL) LAMP	Illuminates when the water separator is filled with water or occur. If it is illuminated, Discharge of water from the water separator.		
13	00	ENGINE PREHEAT LAMP	If it is illuminated when the ignition switch is in the ON position, the engine pre-heating devices is working. Depending on the engine oil temperature, warm-up is completed and the lamp will be turn off after about 15~45 seconds. If the lamp is turn off, start the engine.		
14		ENGINE CHECK LAMP	If the engine warning light is illuminated, it'll be accompanied by some unusual symptoms. Turn off the forklift, and notify your supervisor immediately.		
15	PARKING LAMP		Illuminates when the parking brake is engaged and the ignition is on. If it illuminates when you are driving, check that the parking brake is not engaged.		
16	WORKLAMP		Illuminates when the driver pushes the work lamp switch.		
17	-	SEAT BELT LAMP	It will illuminate to remind you to fasten your safety belt. (approximately 5 seconds)		
18	ė	OPSS LAMP	It will illuminate when the driver deviates from seat after the ignition switch is ON or START. And transmission automatically changes gear in neutral. To return to normal operation, the driver seated correctly in the driver's seat.		
19	BATTERY CHARGE LAMP		If it is illuminated while driving, it indicates a malfunction. Switch off all unnecessary electrical equipment and have the system checked by your authorized dealer.		
20		AIR CLEANER LAMP	Illuminates when the air cleaner is broken. If it illuminates, Check the filter and Clean or Replace a filter.		
21		INCHING LAMP	Illuminates when the driver pushes the work Inching switch.		

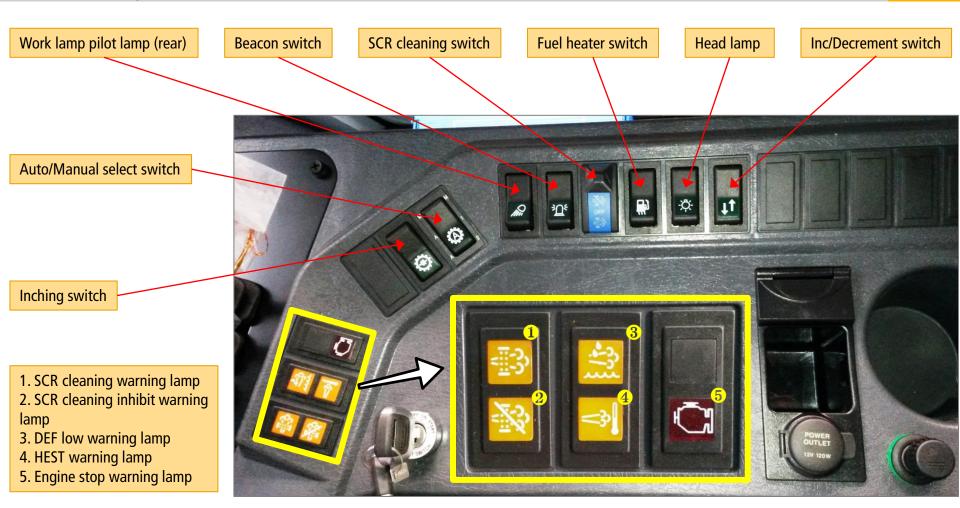
Electric system – Cluster – Display – Odometer – Error codes

Electric system – Cluster Special – Speed Limiter

- 1. Engage Parking brake
- 2. Key ON
- 3. Press 3 buttons the same time for ~3 sec.
- 4. Confirm or decline the function by

5. If YES \rightarrow Change speed (loop) by:

6. Key switch OFF


Electric system – Monitor

1. Only one camera available

Electric system – Cluster Switches console

Electric system – diagrams

ELECTRICAL DIAGRAMS WILL NOT BE PRINTED ON A3

electrical diagram - machine.pdf

81

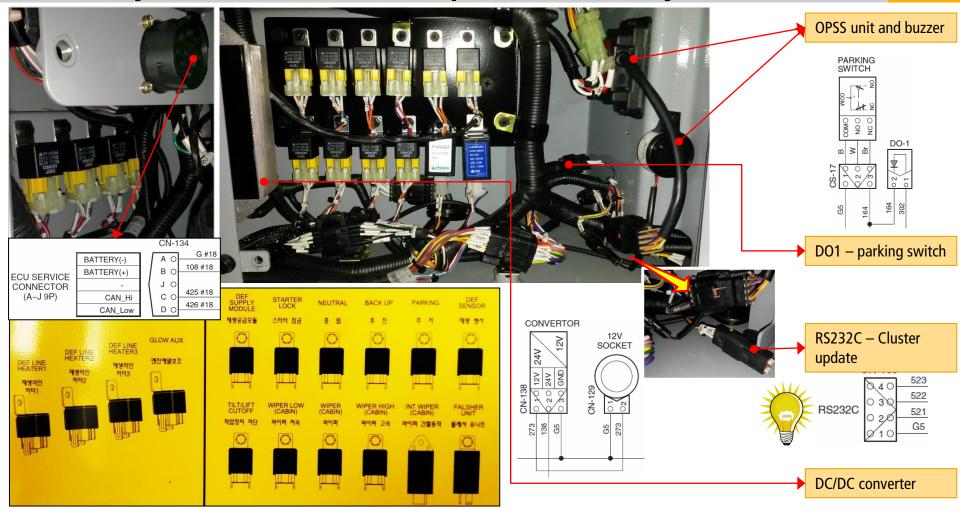
Electric system – component and connectors spec.

1								
No	Part name	Qty	Specification					
1	Battery	2	12V × 72 AH RC : 130 min CCA : 630A					
2	Working lamp	1	24V, 70W					
3	License lamp	1	24V, 10W					
4	Rear Combination lamp	2	24V, 21/5W (Turn signal) 24V, 10W (Tail) 24V, 10W (Stop)					
5	Head lamp	2	24V, 70W					
6	Flasher lamp	2	24V, 25/10W					
7	Room lamp	1	24V, 10W					
8	Cluster	1	24V, 10W					
9	Rear view carnera	1	24V, 2.5W					
10	12V socket	1	12V, 10A					
11	Cigar lighter	1	24V, 5A					
12	Converter	1	24V, 10A					
13	Relay (5P)	14	24V, 8A					
14	Flasher Unit	1	24V, 85±10 CM, (21W + 21W) × 2 + 3W × 2					
15	Back buzzer	1	24V, 90±5 dB, 60±10 C/M, 300 mA max.					
16	Warning buzzer	1	24V, 200 mA, 90±5 dB (1 m)					
17	OPSS buzzer	1	24V, 50 mA max. , 80~90 dB					
18	Hom	1	24V, 1.5 A, 100 ~ 115 dB					
19	Fuel level sender	1	$\begin{tabular}{ c c c c c c } \hline Float indicator & E & 4/8 & F \\ \hline Resistance (\mathcal{Q}) & - & 350 & 50 \\ \hline Tolerance (\mathcal{Q}) & $\frac{+5\%}{-0}$ & $\frac{+0}{-5\%}$ \\ \hline \end{tabular}$					
20	Warning lamp	3	24V					
21	Master switch	1	24V, 180A					
22	Work lamp switch	1	24V, 8A					
23	Hazard switch	1	24V, 8A					
24	Beacon switch	1	24V, 8A					
25	Start switch	1	24V, 60A					
26	Start relay	1	24V, 300A					
27	Tilt switch (cabin)	1	24V, 8A					
28	Monitor	1	24V, 15W					
29	Auto/Manual switch	1	24V, 8A					
30	Clutch cut-off switch	1	24V, 8A					
31	Main light switch	1	24V, 8A					
32	Intermittent wiper relay	1	24V, 5A					
33	OPSS unit	1	24V					

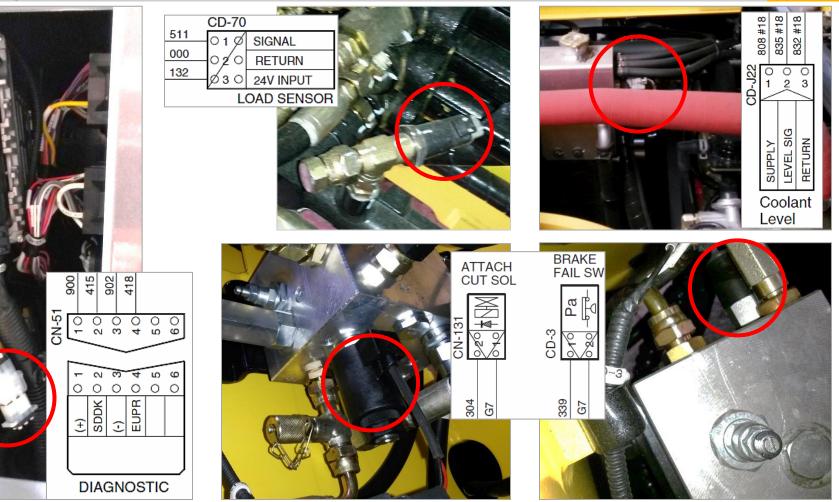
No	Part name	Qty	Specification
34	Increase/Decrease switch	1	24V, 8A
35	Fuel warmer switch	1	24V, 8A
36	Inching switch	1	24V, 8A
37	SCR switch	1	24V, 8A
38	Beacon lamp	1	24V

Electric system – component and connectors spec.

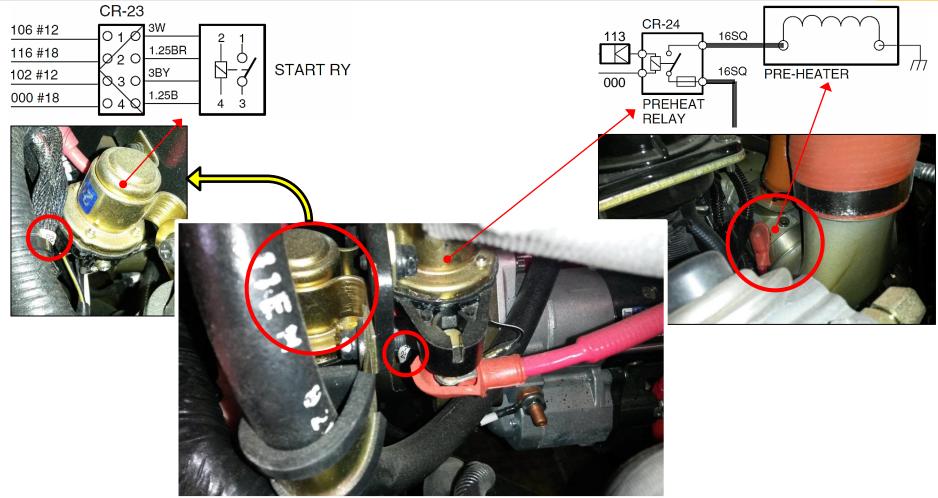
Connector	Tere	No. of	Destination	Connecto	or part No.
number	Туре	pin	Destination	Female	Male
CN-1	AMP	15	l/conn (Console harness-frame harness)	2-85262-1	368301-1
CN-2	AMP	12	l/conn (Frame harness-console harness)	174661-2	174663-2
CN-3	KET	1	l/conn (Frame harness-console harness)	MG640944-5	MG650943-5
CN-4	KET	1	Start cable	-	MG650943-5
CN-6	TYCO	15	l/conn (Console harness-frame harness)	2-85262-1	368301-1
CN-7	TYCO	4	Fuel filter heater	2-967325-3	-
011.0	440	8	DPF harness	174982-2	-
CN-8	AMP	8	Transmission display	929504-3	-
CN-9	AMP	4	Harness monitor (CAN)	174257-2	-
CN-10	AMP	8	l/conn (Console harness-T/M harness)	174982-2	S816-108002
CN-11	AMP	15	l/conn (Console harness-T/M harness)	368047-1	S816-116002
CN-12	AMP	12	l/conn (Frame harness-console harness)	174661-2	174663-2
CN-13	MOLEX	12	l/conn (Frame harness-injector harness)	33472-1206	-
CN-16	AMP	3	Monitor power	174357-2	S816-103002
CN-17	TYCO/AMP	12	l/conn (Cabin harness-console harness)	174661-2	174663-2
CN-19	KET	2	Output check	MG610320	-
	KET	4	Aircon harness (Cabin)	MG641744-5	-
CN-20	CN-20 AMP 6 Diagnostic		480704-0	-	
CN-21	AMP	6	Wiper motor (Cabin)	936257-2	-
CN-22	KET	2	Washer tank (Cabin)	MG640605	-
CN-23	KET	2	LH speaker (Cabin)	MG610070	-
CN-24	KET	2	RH speaker (Cabin)	MG610070	-
CN-25	MOLEX	2	Hom	35825-0211	-
CN-26	KET	1	Tilt alarm	ST730018-3	ST750836-3
CN-27	KUM	16	CD/MP3 radio (Cabin)	PK145-16017	-
CN-36	-	-	Fuse box	21HF-10500	-
CN-37	-	-	Fuse box	21HF-10500	-
CN-45	KET	1	Start motor	S820-205000	-
CN-50	AMP	68	Transmission control unit	963598-1	-
CN-51	AMP	6	Diagnostic	-	926682-3
CN-54	AMP	36	Load indicator control unit	344111-1	-
CN-55	KET	14	OPSS unit	MG610350	-
CN-56	AMP	20	Cluster	174047-2	-
CN-57	AMP	20	Cluster	175967-2	-
CN-65	KET	1	Back buzzer	ST730018-3	-
CN-71	DEUTSCH	6	Seat switch	DT06-6S	-
CN-74	KET	1	Alternator	S820-105000	-
CN-95	KET	2	Fusible link	-	MG620558


Connector	Type	No. of	Destination	Connecto	or part No.
number	type	pin	Desunation	Female	Male
CN-98	DEUTSCH	3	Resistor	DT06-3S-EP06	-
CN-101	FRAMATOME	4	ENG TBAP	54200415	-
CN-113	KET	2	OPSS buzzer	MG610320	-
CN-124	AMP	6	Accelerator pedal	174262-2	-
CN-129	KET	2	12V socket	MG610043	-
CN-131	DEUTSCH	2	Attach cut solenoid	DT06-2S	-
CN-134	DEUTSCH	9	ECU service port	-	HD10-9-19399
CN-138	KET	3	Converter	MG610045	-
CN-147	KET	2	Cabin tilting pump motor	MG640188-4	-
CN-151	DELPHI	96	ECU J2	13964577	-
CN-169	DEUTSCH	4	RS232C	DT06-4S-EP06	DT04-4P-E005
CN-J1	FIC	24	ECU J1	F934000	-
CN-J6	DEUTSCH	4	DEF quality sensor	DT06-4S	-
CN-J7A	AMP	4	NOX sensor (Gray)	2-1418390-1	-
CN-J7B	AMP	4	NOX sensor	1-1418390-1	-
CN-J10	AMP	4	SCR thermo control	3-1418390-1	-
CN-J26	AMP	12	DEF supply module	2-1703639-1	-
CN-J27	AMP	4	DEF tank heater valve	1-967325-1	-
CN-J28	DEUTSCH	2	DEF pressure line	DT06-2S	-
CN-J29	DEUTSCH	2	DEF backflow line	DT06-2S	-
CN-J30	DEUTSCH	2	DEF suction line	DT06-2S	-
CN-J31	BOSCH	2	DEF dosing module	1928403874	-
Switch					
CS-2	KET	2	Start switch	MG610281	MG620282
CS-5	KET	2	Horn switch	MG640322	-
CS-5A	KET	2	Horn switch	MG610320	-
CS-5B	KET	1	Horn switch	S820-10500	-
CS-6	KET	1	Multi function switch	ST730018-3	-
CS-10	DAEDONG	10	Fuel warmer switch	250-10PRG	-
CS-11	KET	6	Combination switch	MG610335	-
CS-12	KET	8	Combination switch	MG610339	-
CS-14	PACKARD	4	Gear selector switch	-	12010974
CS-15	PACKARD	4	Gear selector switch	12015797	-
CS-17	KET	3	Parking brake switch	MG610045	-
CS-23	DAEDONG	10	Beacon switch	250-10PRG	-
CS-39	DAEDONG	10	Main light switch	250-10PRG	-
CS-41	DAEDONG	10	Hazard switch	250-10PRG	-
CS-42	DAEDONG	10	Inching switch	250-10PRG	-
CS-59	DAEDONG	10	Auto/Manual switch	250-10PRG	-
CS-64	DAEDONG	10	Increase/Decrease switch	250-10PRG	-

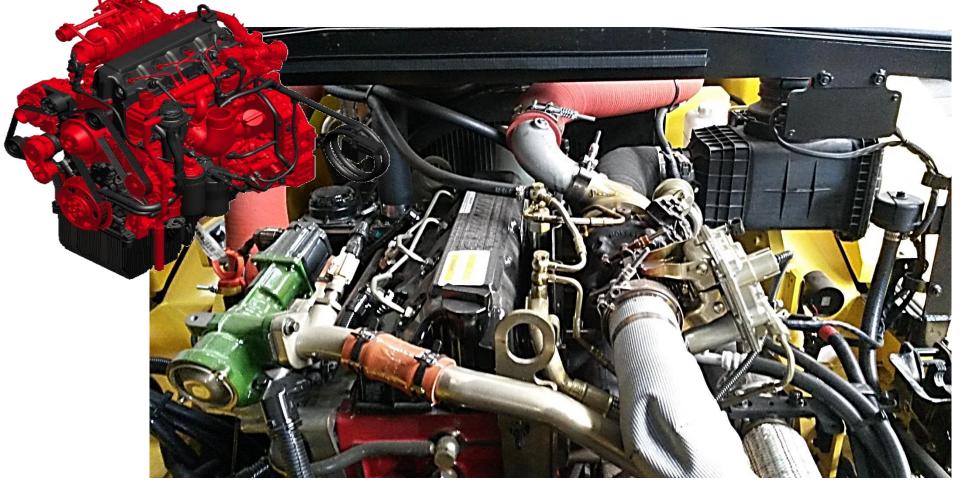
Electric system – component and connectors spec.


Connector	Terr	No. of	Destination	Connecto	r part No.
number	Туре	pin	Destination	Female	Male
CS-69	DAEDONG	10	Rear work switch	250-10PRG	-
CS-72	DEUTSCH	4	Tilt alarm switch	DT06-4S	DT04-4P
CS-74	DEUTSCH	4	Cabin tilting supply switch	DT06-4S	DT04-4P
CS-77	SWF	10	Cabin tilting switch	593757	
CS-100	SWF	12	SCR switch	589790	-
Lamp					
	KET	1	Cigar light	ST730018-3	ST750036-3
CL-2	AMP	1	Cigar light	172128-1	-
CL-7	KET	2	Beacon lamp	-	DT04-2P
CL-15A	AMP	3	ILLUM/Stop lamp (Black)	282087-1	-
CL-15B	DAEDONG	3	Turn/back up lamp	282087-2	-
CL-16A	AMP	3	ILLUM/Stop lamp (Black)	282087-1	-
CL-16B	AMP	3	Turn/back up lamp (Gray)	282087-2	-
CL-21	KET	1	License lamp	ST730018-3	ST750036-3
CL-23	KET	1	Rear work lamp	S822-014000	S822-114000
CL-24	DEUTSCH	6	Work lamp-LH	DT06-6S	-
CL-25	DEUTSCH	6	Work lamp-RH	DT06-6S	-
CL-40	SWF	2	Engine stop lamp	913328	-
CL-41	SWF	2	HEST lamp	913328	-
CL-42	SWF	2	SCR cleaning lamp	913328	-
CL-43	SWF	2	SCR cleaning inhibit lamp	913328	-
CL-50	SWF	2	DEF low lamp	913328	-
CL-51	KET	2	Room lamp (Cabin)	MG610392	-
Relay			-		
CR-4	KET	5	Wiper relay (Cabin)	MG640927	-
CR-5	KET	5	Neutral relay	MG640927	-
CR-6	KET	4	Intermittent wiper relay (Cabin)	MG610047	-
CR-11	-	3	Flasher unit relay	312-GIHUNG	-
CR-23	KET	4	Start relay	172134-1	-
CR-24	KET	1	Pre-heater relay	ST730018-3	-
CR-26	KET	5	Wiper pump relay (Cabin)	MG640927	-
CR-34	KET	5	Parking relay	MG640927	-
CR-35	KET	5	Back up relay	MG640927	-
CR-36	KET	5	Start lock relay	MG640927	-
CR-39	KET	5	Wiper high relay	MG640927	-
CR-44	AMP	2	Cabin tilting relay	174352-2	-
CR-45	KET	5	Glow aux relay	MG640927	-
CR-50	KET	5	Tilt/Lift cut-off relay	MG640927	-
CR-58	KET	5	DEF supply module relay	MG640927	-
CR-59	KET	5	DEF & sensor relay	MG640927	-

Connector	Time	No. of	Destination	Connecto	r part No.
number	Туре	pin	Desurtation	Female	Male
CR-61	KET	5	DEF line heater-1 relay	MG640927	-
CR-62	KET	5	DEF line heater-2 relay	MG640927	-
CR-63	KET	5	DEF line heater-3 relay	MG640927	-
Sensor a	nd pressure a	switch			
CD-2	KET	3	Fuel sendor	MG610045	-
CD-3	DEUTSCH	2	Brake fail pressure	-	DT04-2P
CD-4	AMP	1	Stop lamp switch	171809-2	-
CD-27	AMP	2	Turbin speed input	963040-3	-
CD-38	DEUTSCH	2	Water in fuel switch	DT06-2S	-
CD-71	AMP	6	Inching sensor	1-967616-1	-
CD-72	AMP	2	Gear train speed sensor	963040-3	-
CD-73	AMP	3	Output speed sensor	282087	-
CD-80	PACKARD	2	KV Solenoid	12162197	-
CD-81	PACKARD	2	KR Solenoid	12162197	-
CD-82	PACKARD	2	KD Solenoid	12162197	-
CD-83	PACKARD	2	KE Solenoid	12162197	-
CD-84	PACKARD	2	KC Solenoid	12162197	-
CD-90	AMP	2	Temp sensor	963040-3	-
CD-J22	DELPHI	3	Coolant level	12110293	-
DO-01	-	2	Diode	21EA-50550	-


Electric system – electrical compartment - relays

Electric system – electrical compartment - examples



Electric system – electrical compartment - examples

CUMMINS QSF3.8 CM2350 F107

Specifications		Review procedure 003-004
Listed below are the general specifications for this engine. Horsepower Refer to engine dataplate Image:	Full stall 1260 rpm	<u>NOTE</u> : Engine coolant temperature must be less than 60°C [140°F]. Finding Top Dead Center Cylinder #1
Bore and Stroke 102 mm [4.02 in] x 115 mm [4.53 in] Firing Order 1-3-4-2 Engine Weight (with standard accessories): Dry Weight for 3.8 liter engine [231 C.I.D.] State 348 kg [767 lb] Crankshaft Rotation (viewed from the front of the engine) Clockwise Valve Clearance: Intake Intake 0.330 mm [0.013 in] Exhaust 0.584 mm [0.023 in] Maximum Overspeed Capability (15 seconds maximum) 3750 rpm Minimum Ambient Air Temperature for Unaided Cold Start - 12.2°C [10°F] Minimum Engine Cranking Speed 120 rpm Engine Idle Speed 700 rpm Altitude Maximum Before Derate Occurs 120 rpm		NOTE: The engine features a no-adjust overhead. Adjustment of the valve lash is not required for
3.8 liter engine 1676 m [5500 ft] Oil Carryover:		Adjustment of the valve lash is not required for normal service during the first 5000 hours. The valve train operates acceptably within the limits of 0.229 to 0.457 mm [0.009 to 0.018 in] intake valve lash and 0.457 to 0.838 mm [0.018 to 0.033 in] exhaust valve lash. It is recommended that the valve lash be checked at 5000 hours and every 2000 hours thereafter.

Fuel system

Specifications

For performance and fuel rate values, see the Engine Data Sheet.

Maximum Fuel Inlet Restricti	tion - With gear pump only (at gear p	ump inlet)	14 kPa [12 in-Hg]
Rail Pressure 2	250 to 2,000 bar [3,626 to 29,008 psi]		
Maximum Fuel Pressure Ran With gear pump only	inge at Fuel Filter Outlet (engine cran		kPa [1 in-Hg] kimum
Fuel Pressure Range at Fue	el Filter Inlet (engine running) - With g	ear 400 to	810 kPa [58 to 117
pump only		psi]	
Maximum Fuel Drain Line Re	estriction	20 kPa [5.9	in-Hg]
Maximum Fuel Inlet Tempera	rature	70°C [1	58°F]

Cooling system

Specifications

Engine Coolant Capacity	7.3 liters [7.7 qt]
Standard Modulating Thermostat - Range	82 to 95°C [180 to 203°F]
Maximum Allowed Operating Temperature	107°C [225°F]
Minimum Recommended Operating Temperature	70°C [158°F]
Minimum Recommended Pressure Cap at Sea Level	90 kPa [13 psi]

Lubrication system				
Specifications				
Oil Pressure				
Low idle (minimum allowed)		69 kPa	a [10 psi]	
At rated speed (minimum allowed	1)	275	i kPa [40 psi]	
Oil-regulating valve-opening pres	sure range	525 kPa to 600	kPa [76 psi to 87 psi]	
Oil filter differential pressure to o	pen bypass		345 kPa [50 psi]	
Lubricating oiil filter capacity		0.85 liter	s [0.9 qt]	
Oil Capacity of Standard Engine	•			
Low Capacity Rear Sump Oil	Pan			
Pan only	8 liters [8.4	qt]		
Total system	10.6 liters	[11.2 qt]		
High to low (on dipstick)		1.5 liters [1	.6 qt]	
Maximum Oil Temperature			; [275°F]	

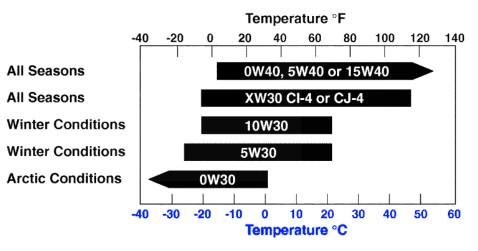
<u>NOTE</u>: If the type/oil capacity of the oil pan is not known:

Contact a Cummins® Authorized Repair Location.

Determine the capacity of the oil pan option for the engine being serviced. Use QuickServe[™] Online and the engine serial number.

Fill the lubricating oil pan to the smallest oil pan capacity listed for the engine being serviced. Then add 0.95 liters [1 qt] of oil at a time until it reaches the high mark on the dipstick.

Record the number of quarts added, so that the capacity is known the next time the oil is drained.


Intake system		
Specifications		
Maximum Intake Restriction:		
Clean Air Filter Element	3.71 kPa / 378 mm H2O [15 in H2O]	
Dirty Air Filter Element	6.2 kPa / 632 mm H2O [25 in H2O]	
Charge-Air Cooler Temperature Diffe	rential:	
Maximum Differential	30°C [86°F]	
Charge-Air Cooler Pressure Different	ial:	
Maximum Charge-Air Cooler Pressure Drop 13.5 kPa [1.96 psi]		
Recommended Intake Piping Size	76 mm [3 in]	

Exhaust system

Specifications
Maximum Back Pressure (imposed by complete exhaust system) 18 kPa [5.3 Hg]
Exhaust Pipe Size (normally acceptable inside diameter) 75 mm [3 in]

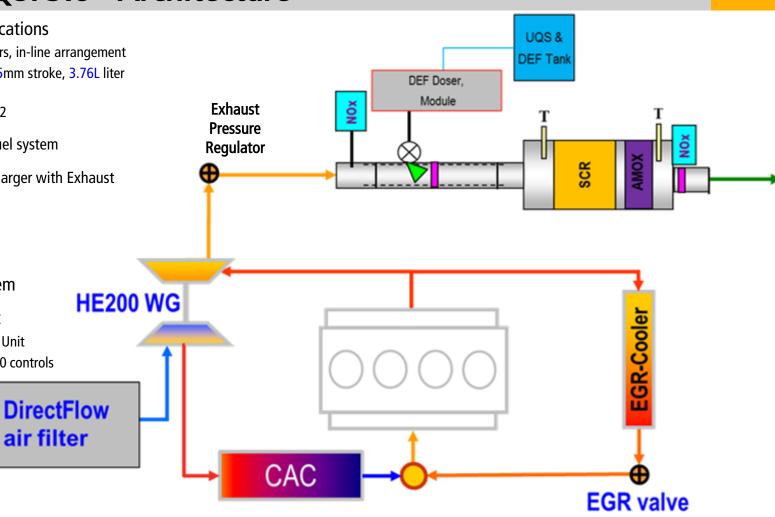
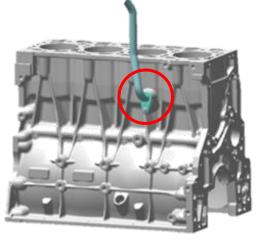

Table 1: Cummins Inc. Required Diesel Fuel Specifications1			
Viscosity	1.3 to 4.1 centistokes at 40°C [104°]		
Cetane Number	42 minimum above 0°C [32°F]; 45 minimum below 0°C [32°F] ²		
Sulfur Content	Maximum sulfur content of 15 ppm in the United States and Canada and 10 ppm in the EU		
Active Sulfur	Copper strip corrosion not to exceed number 3 rating after 3 hours at 50°C [122°F].		
Water Sediment	Not to exceed 0.05 volume-percent		
Carbon Residue	Not to exceed 0.35 mass-percent on 10 volume-percent residuum		
Density	0.816 to 0.876 grams per cubic centimeter (g/cc) at 15°C [59°F]		
Cloud Point	6°C or 11°F below lowest ambient temperature at which the fuel is expected to operate		
Ash	Not to exceed 0.02 mass-percent. For vehicles equipped with exhaust aftertreatment, there shall be no detectable ash in the fuel		
Distillation	10 volume-percent at 282°C [540°F] maximum, 90 volume-percent at 360°C [680°F] maximum, 100 volume-percent at 385°C [725°F]maximum. The distillation curve must be smooth and continuous		
Lubricity (HFRR)or (SLBOCLE)	High Frequency Reciprocating Rig (HFRR): Maximum of 0.52 mm[0.020 in] Wear Scar Diameter (WSD) at 60°C [140°F].Scuffing Load Ball-on-Cylinder Lubricity Evaluator (SLBOCLE):Minimum of 3100 grams		

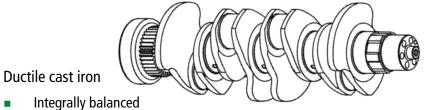
Table 2: Cummins Inc. Required Diesel Oil Specifications			
Cummins® Engineering Standard (CES) Classifications	CES-20081		
American Petroleum Institute (API) Classification	API CJ-4		
Association des Constructeurs Européen d'Automobiles (ACEA) Classification	ACEA E-9		



CUMMINS QSF3.8 - Architecture

- **Base engine specifications**
 - 4 stroke, 4 cylinders, in-line arrangement .
 - 102mm bore x 115mm stroke, 3.76L liter displacement
 - Firing order 1-3-4-2
- Denso common rail fuel system
- Wastegated Turbocharger with Exhaust Pressure Regulator
- **Emissions Target**
 - Tier 4 Final
- Cold side EGR system
- **SCR** Aftertreatment
 - **Bosch DEF** Dosing Unit
 - Integrated CM2350 controls

CUMMINS QSF3.8 – Mechanical – Cylinder block & Crankshaft



Cast grey iron

Sculpted design

Less material & Greater Strength
 Bored cylinders in parent material
 Block Stiffener Plate

Water supply port for EGR cooler.

The front gear is used to drive only the oil lubrication pump.

The rear gear is used to drive the camshaft, the fuel pump and accessories.

Neither gear is serviceable.

If damaged, the entire crankshaft assembly must be replaced.

Main Bearing and Main Bearing Cap

The upper and lower main bearing shells are not interchangeable.

- The backs of the main bearings are marked with the proper orientation.
- The upper bearings have one hole that receives lubricating oil from the main oil rifle.

This engine only have a thrust bearing for the upper main bearing (180 degree).

- The crankshaft thrust bearing must be installed in the number 4 main bearing position.
- The flanges on this main bearing control the end thrust of the crankshaft.

CUMMINS QSF3.8 – Mechanical – Connecting Rod and Bearings

Angle split rod

- The connecting rod is fractured during the manufacturing process to separate the connecting rod cap from the connecting rod.
- Angle split creates a narrower rod profile.

The surface between the connecting rod and the cap is not machined.

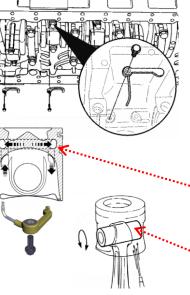
- Unique surface on every connecting rod and cap.
- Surface must be protected.
- Improper mating will cause rod damage.

Aluminum alloy lining bonded onto a steel strip. Lower and upper bearing use different material.

Lower connecting rod bearings:

Good embedability

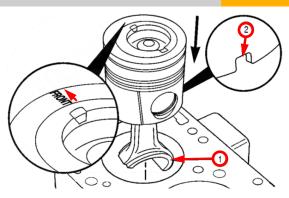
Upper connecting rod bearings:


Good fatigue strength

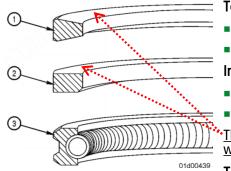
Reference the appropriate Part Information resources when replacing the connecting rod bearings, so the correct connecting rod bearings are installed.

CUMMINS QSF3.8 – Mechanical – Piston & Rings

- One piece aluminum alloy piston.
- Front of piston is marked an arrow.



J-jet piston cooling nozzles are located between the main bearing saddles on the exhaust side of the engine.


Oil is supplied from an oil gallery in the block.

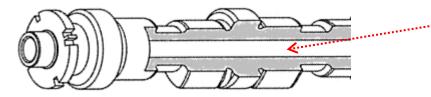
The nozzles supply lubricating oil to the underside of the pistons.

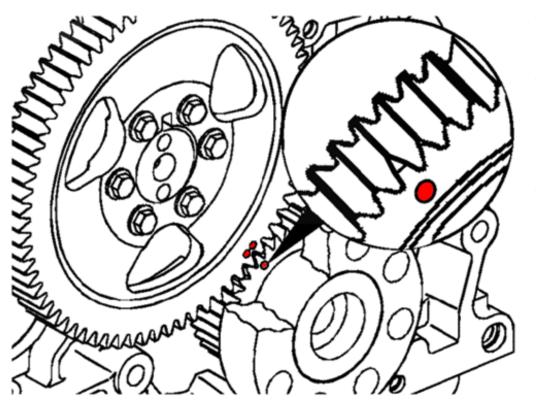
- The pistons have an oil passage cast into the top of the piston for cooling purposes.
- Lubrication for the piston pin and journal is supplied by residual spray from the nozzles.

- Align the "Front" marking on the top of the piston so that it points towards the front of the engine.
- The long end of the connecting rod (1) and the notch in the piston skirt (2) will be on the exhaust side of the engine.

Top Piston Ring

- Hard particle chrome plating
- Keystone shape


Intermediate piston ring

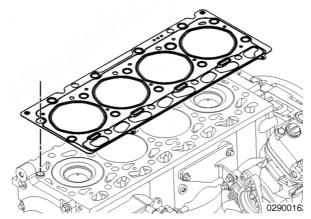

- The material is changed for higher wear resistance.
 - Square cut shape

*The top surface of the upper and intermediate rings are identified either with the word "TOP" or "O". Assemble with the word "TOP" or "O" facing upward.

The bottom ring, or oil control ring, can be installed with either side up.

CUMMINS QSF3.8 – Mechanical – Camshaft

The camshaft is hollow to allow crankcase gases to flow through it to the front of the engine.


The camshaft speed indicator ring is mounted to the end of the camshaft at the front of the engine.

Only one camshaft bushing on flywheel end.

The camshaft must be timed to the crankshaft.

- The crankshaft gear has a special edge beveled gear tooth.
- The camshaft gear has a drilling between two teeth.

CUMMINS QSF3.8 – Mechanical – Cylinder Head and Gasket

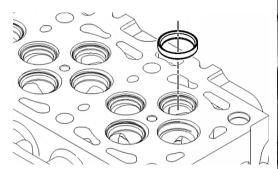
The cylinder head gasket is a specialized metal design with a printed o-seal on both sides around the water holes.

An embossment in the gasket seals the cylinder bores.

Head gasket grading is not required for these engines.

 No head gasket with an increased thickness, is available for cylinder head or block combustion deck resurfacing.

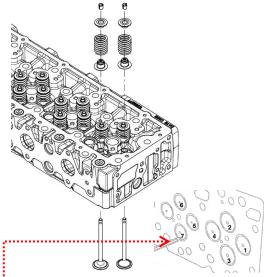
A new gasket **must** be installed. Do **not** reuse an old gasket.


One-piece

Cross flow design

Four valve per cylinder design

 Allows for a centered injector in the cylinder head


Replaceable valve seats The cylinder head has integrally cast valve guides which are not serviceable.

CUMMINS QSF3.8 – Mechanical – Valves, tappets and rockers

The intake and exhaust valves are made of heat resistant steel, and have chrome plated stems to prevent scuffing.

 Intake and exhaust valves have similar design, but are not interchangeable.

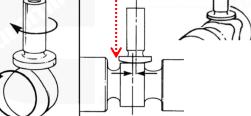
If installing the same valves as previously removed, make sure to install the valves in the same locations from which the valves were removed.

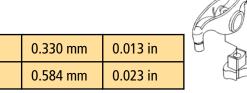
Both valves have a dimple on the valve head.

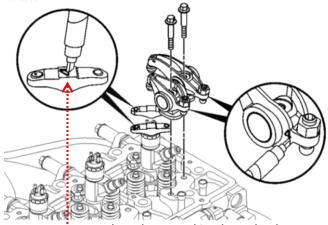
Transfers movement of the camshaft lobe to the rocker lever.

Tappets

Intake


Exhaust


- Top Hat design
- Offset from lobe center causes tappet rotation.


Splash lubricated

 Oil from rocker lever runs down the tube and onto the tappet.

The exhaust and intake rocker levers are mounted on a common pedestal, but rotate on separate shafts.

Crosshead allows one lever to depress two valves.

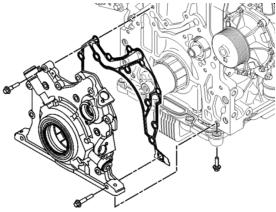
The crosshead has a round and oval hole.

If installing new crossheads, it is not required to place the holes in a particular position.

If crossheads are being reused, make sure to install them in their original location and orientation.

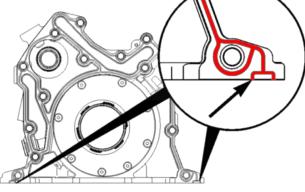
CUMMINS QSF3.8 – Mechanical – Rocker cover, front gear cover, seal

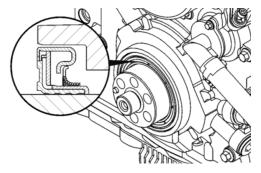
New valve cover to match with the new injectors.


High Pressure Fuel Supply lines and Injector wires pass-through connectors.

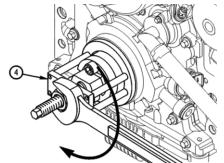
 Critical to clean before loosening or removing high pressure supply lines.

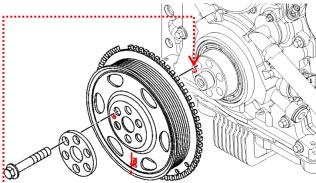
The rocker lever cover uses a molded rubber gasket.


The gasket is inserted into a groove along the perimeter of the rocker lever cover.



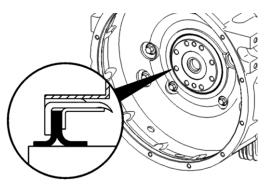
The lubricating oil pump and lubricating oil high pressure valve are a part of the front gear cover.

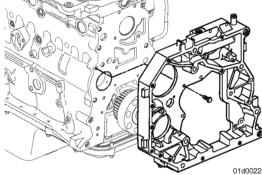

When installing the front gear cover gasket, take care not to damage the rubber seal on the bottom edges of the gasket.



This engine is equipped with a Unitized/Cartridge seal which utilizes a built-in wear sleeve and a concealed sealing lip.

The inner and outer diameters are pressfit onto the crankshaft and the front gear cover respectively. The sealing point is internal to the seal.


CUMMINS QSF3.8 – Mechanical – Pulley, gear housing, accessory drive

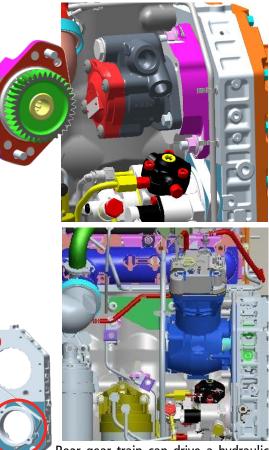


The crankshaft pulley and the crankshaft speed indicator ring are a permanent assembly.

No vibration damper.

Align the crankshaft pulley with the index pin located on the nose of the crankshaft.

The die cast aluminum gear housing is at the rear of the engine between the block and flywheel housing.


The rear gear housing is used to mount the fuel pump and a gear driven accessory driven accessory drive.

The rear gear housing also contains an internal oil passage to feed oil to the accessory drive.

This engine is equipped with a lip style rear crankshaft seal.

 The rotating portion of the sealing occurs at the contact surface between the lip of the rear crankshaft seal and the crankshaft.

The seal is installed in the flywheel housing bore.

Rear gear train can drive a hydraulic pump through accessory drive, or drive a air compressor.

CUMMINS QSF3.8 – Fuel System

WARNING

The fuel pump, high-pressure fuel lines, and fuel rail contain very high-pressure fuel. Do not loosen any fittings while the engine is running. Wait at least 10 minutes after shutting down the engine before loosening any fittings in the highpressure fuel system to allow pressure to decrease to a lower level.

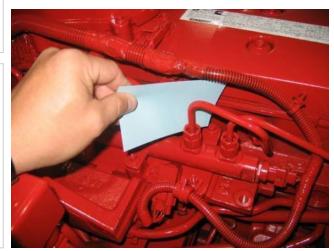
Fuel can be returned at highly elevated temperatures. Wear safety goggles and protective gloves and clothing when performing this test. To reduce the possibility of personal injury, avoid contact with returned fuel.

WARNING

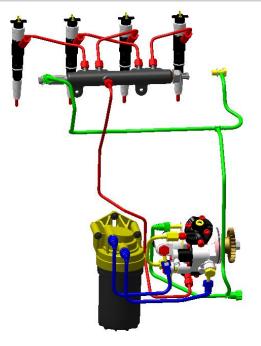
- Wear your safety glasses
- Use cardboard or paper for identifying/troubleshooting high-pressure leaks ... <u>Never</u> use your hands or fingers
- 2 000 Bar = 29 000 PSI
- 2 Bar (30 PSI) is enough to penetrate human skin and cause a pressure injection.

What can high pressure fluids do?

- Industrial water jets (abrasive jets) are used to cut wood, steel, rock, and various metals
 - The water pressure is typically between 1400 to 3800 bar. The water is forced through a 0.25 to 0.4 mm in diameter orifice in a jewel and can cut 12 mm thick titanium at the rate of 180 mm per minute


CAUTION !

Before servicing any fuel system components, (such as fuel lines, fuel pump, injectors, etc.) which would expose the fuel system or internal engine component to potential contaminants prior to disassembly, clean the fittings, mounting hardware, and the area around the component to be removed.


Dirt or contaminants can be introduced into the fuel system and engine if the surrounding areas are not cleaned, resulting in damage to the fuel system and engine.

Steam is the best method of cleaning a dirty engine or a piece of equipment.

Electrical contact cleaner can be used if steam cleaning tools are not available.

CUMMINS QSF3.8 – Fuel System – Overview and Operation

The fuel system is a High-Pressure Common Rail electronically controlled fuel system.

Provided by the Nippon Denso.

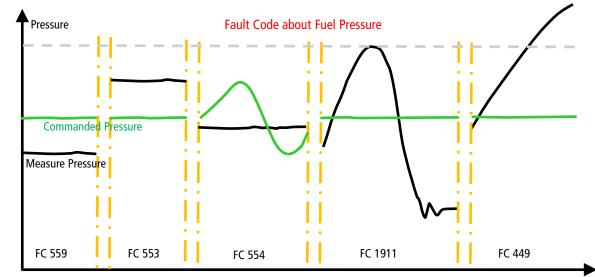
The maximum normal operating pressure is 2000bar [29000 PSI].

Pressure Control:

According to driver's command and engine running condition, ECM determines a "Commanded Pressure". This is a desired pressure that engine should have.

Through the fuel pressure sensor, ECM gets a "Measured Pressure". This is actual pressure in the rail. ECM compare Measured and Commanded Pressure, then adjust Fuel Pump Actuator, change the fuel flow of pump, make Measure Pressure match with Commanded Pressure.

Injection Timing (& Injection Duration)


ECM controls the timing of the engine by actuating the injector solenoids.

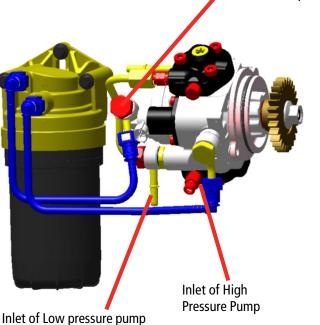
Injection fuel amount


Pressure & Injection duration.

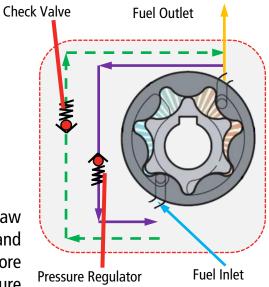
The Rate of Injection

Multiple injection events can be achieved by electronically controlling the injectors.

CUMMINS QSF3.8 – Fuel System – Diagram


CUMMINS QSF3.8 – Fuel System – Low Pressure Pump

Fuel is drawn from the OEM fuel supply tank through a suction side fuel filter, which is remotely mounted on the vehicle chassis, by the high-pressure fuel pump mounted low pressure pump.


Fuel exiting the low pressure pump is routed to the pressure side fuel filter, which is mounted on-engine.

From the pressure side fuel filter, fuel flows to the high-pressure fuel pump.

Outlet of Low pressure pump

The low pressure pump is used to draw fuel from the OEM supply tank , and increase supply fuel pressure before delivering the fuel to the high-pressure section of the fuel pump.

It is a gerotor type pump. And It use same driveshaft with high pressure pump driveshaft.

A pressure regulator and a check valve are built into the low pressure pump.

- Pressure regulator limits the pressure in the low pressure pump during normal operation.
- Check valve allow fuel through low pressure pump during priming operation. (Using hand priming pump)

Low pressure pump is not a serviceable component.

CUMMINS QSF3.8 – Fuel System – Filters

Hand priming pump

NOUSTRIES CO., LTD. 엔진 전용 4F engine only) FILTER ELEMENT 1040

Pressure Side Fuel Filter

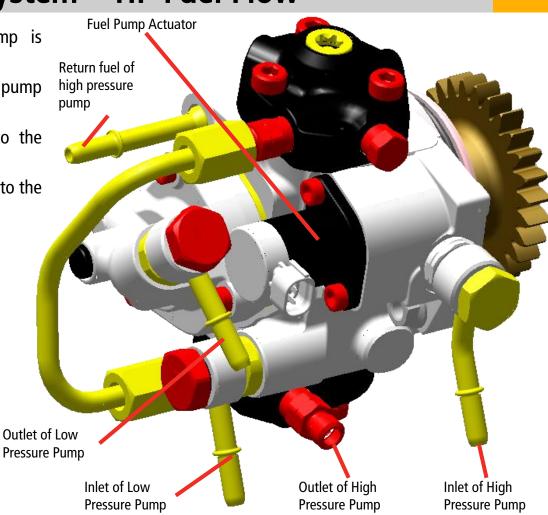
Engine mounted Mesh: ≥ 95% @ 5µm Final point of filtration before high pressure components. Should not be pre-filled. Dirty side Clean side

Suction Side Fuel Filter

OEM install Mesh: >95% or more @ 8 micron Water separator efficiency: 99% or more

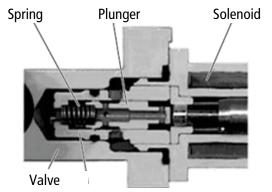
An hand priming pump is used to prime the fuel system Water In Fuel (WIF) sensor Can be pre-filled

CUMMINS QSF3.8 – Fuel System – HP Fuel Flow

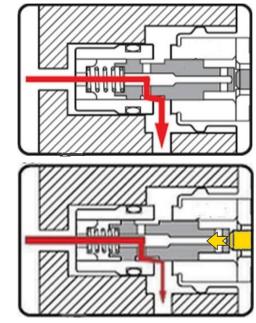

The fuel that enters the high pressure fuel pump is pressurized by two radial pumping chambers.

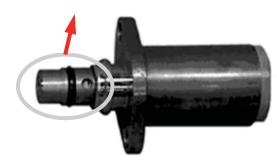
High pressure fuel leaves the high pressure fuel pump through a fuel rail supply tube to the fuel rail.

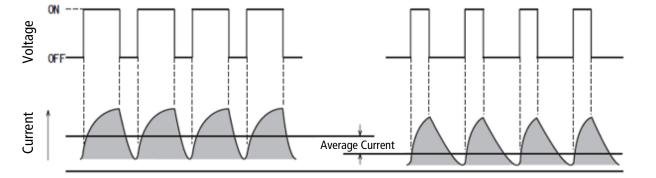
From the fuel rail, high-pressure fuel is directed to the injectors through injector supply lines.


Under the control of ECM, the injector spray the fuel into the cylinder.

CUMMINS QSF3.8 – Fuel System – Fuel Pump Actuator

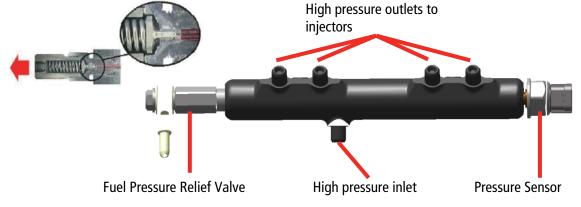

The fuel pump actuator is controlled by the Pulse Width Modulation (PWM) signal from the ECM to maintain the pressure in the fuel rail at a desired level.

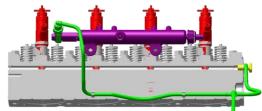



A fuel pump actuator mounted on the highpressure fuel pump regulates the volume of fuel that is allowed to enter the two pumping chambers.

The inlet metering valve is a normally open valve.

- The valve is held open by a spring when there is no current flowing to the actuator.
- When the current is turned on, a magnetic force generated in the actuator overcomes the spring force and the valve closes, blocking flow into the high pressure pump.

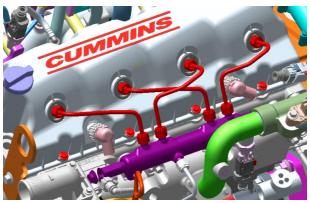

CUMMINS QSF3.8 – Fuel System – Fuel Rail and drain


The fuel rail acts as a fuel manifold accumulating and distributing fuel to each of the injector supply lines.

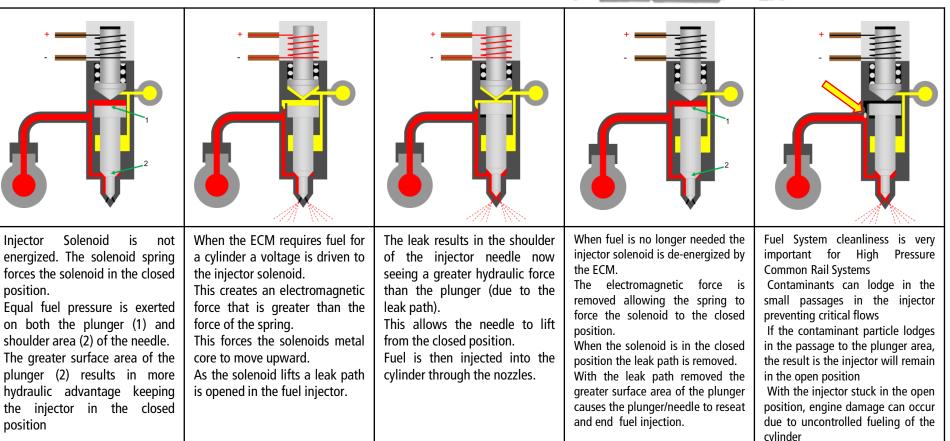
The fuel rail contains a fuel rail pressure sensor that monitors the pressure provided to the fuel rail from the high-pressure fuel pump.

The pressure relief valve protects the system from excessive pressure.

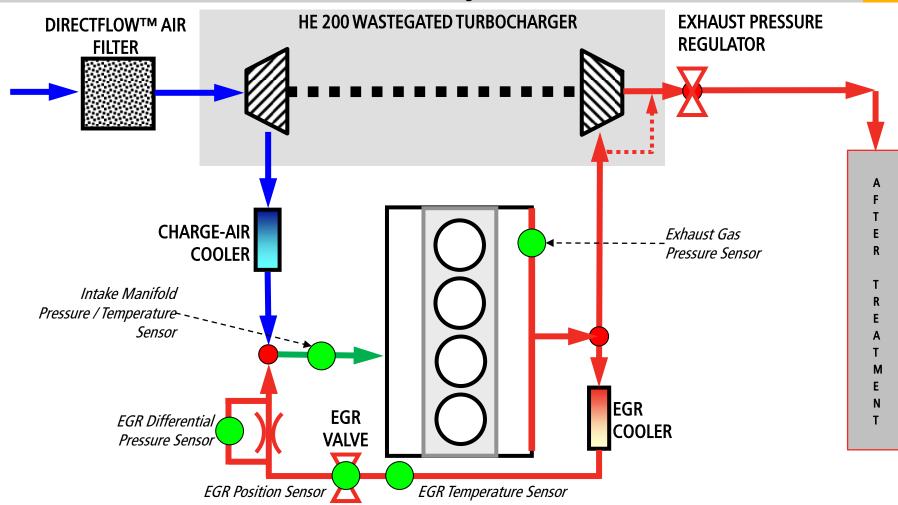
- It opens when rail pressure rises above 2210 bar [32053 PSI].
- Once the pressure relief valve opens it regulates the pressure to ~550 bar [7977 PSI]
- It reseats when the pressure drops below 400 bar [5801 PSI]



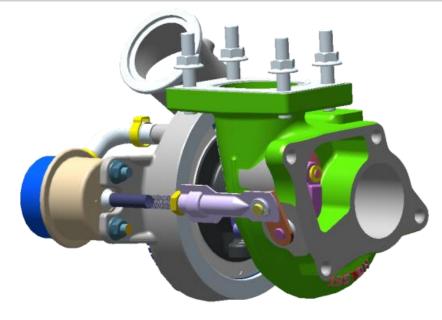
- Return fuel from high pressure pump
- Return fuel from fuel rail
- Return fuel from injectors


The high pressure fuel lines are made of thickwalled tubing with formed ends. High pressure nuts are installed on the lines before the tube ends are formed.

Every effort must be made to maintain the mechanical integrity of high pressure fuel tube clamps and support brackets to prevent high pressure fuel from leaking.

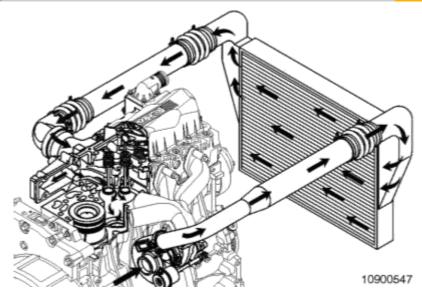

CUMMINS QSF3.8 – Fuel System – Injectors

ECM controls the fueling and timing of the engine by actuating the injector solenoids Multiple injection events can be achieved by electronically controlling the injectors



CUMMINS QSF3.8 – Air/Exhaust System – Flow

CUMMINS QSF3.8 – Air/Exhaust System – Components



Turbocharger

HE200WG.

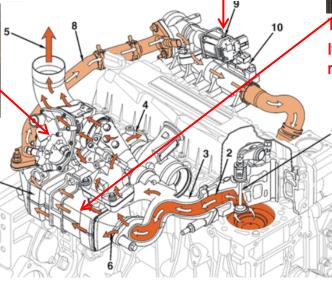
Made by CTT.

Wastegated design allows maximum boost to be developed quickly (low RPM) while making sure that the turbocharger does not overspeed at higher engine rpm's.

Charge Air Cooling

Turbocharging air increases its temperature due to friction.

Air-to-air heat exchanging reduces the temperature of the air before it enters the intake manifold, it improve engine performance and reduce emissions.

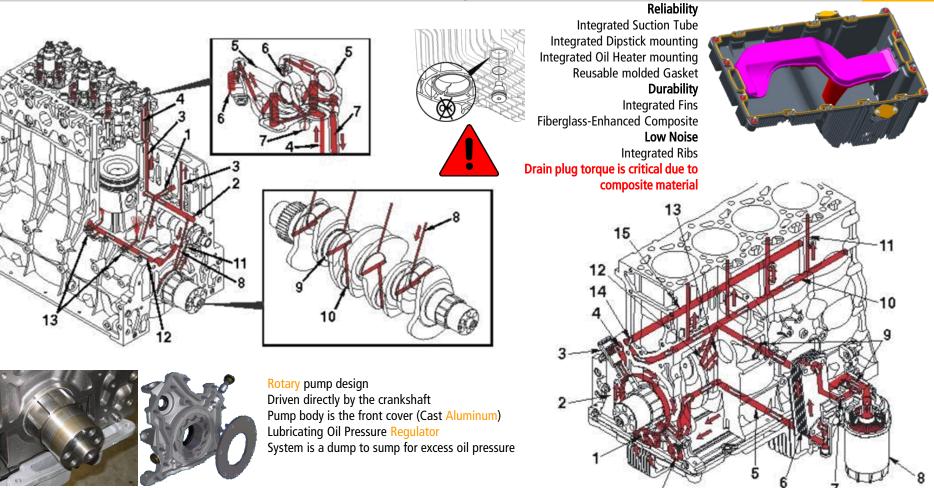

OEM Supplied, OEM responsibility.

CUMMINS QSF3.8 – Air/Exhaust System – Components

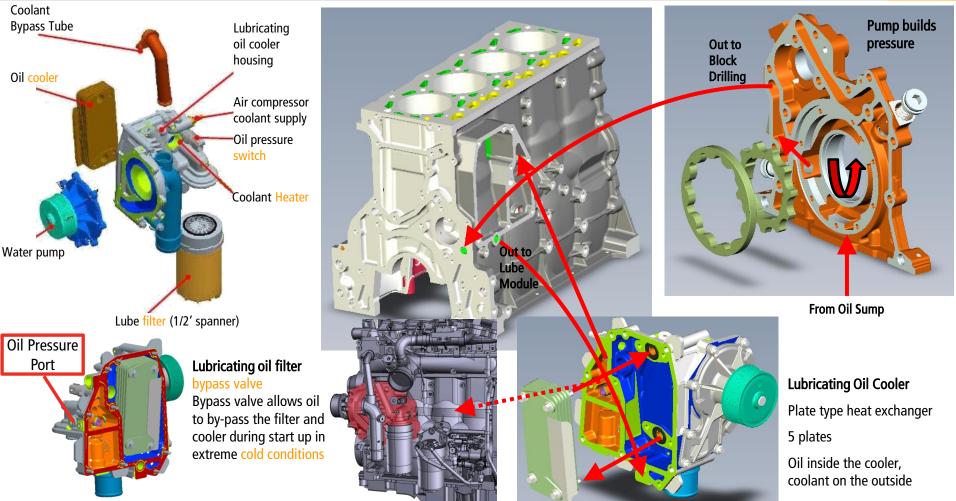
EXHAUST PRESSURE REGULATOR Necessary for increasing exhaust gas temperature for SCR cleaning process.

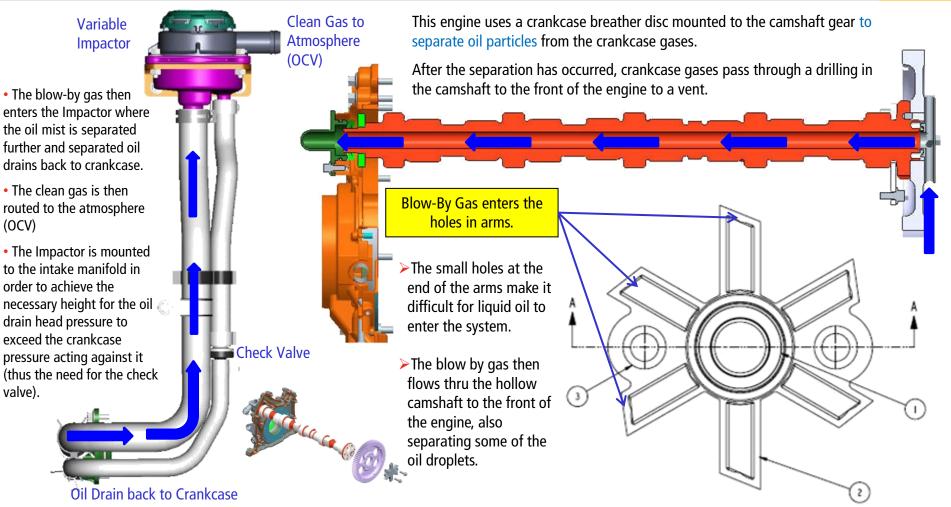
The EGR valve motor is not a serviceable part. If damaged, the entire EGR valve assembly must be replaced.

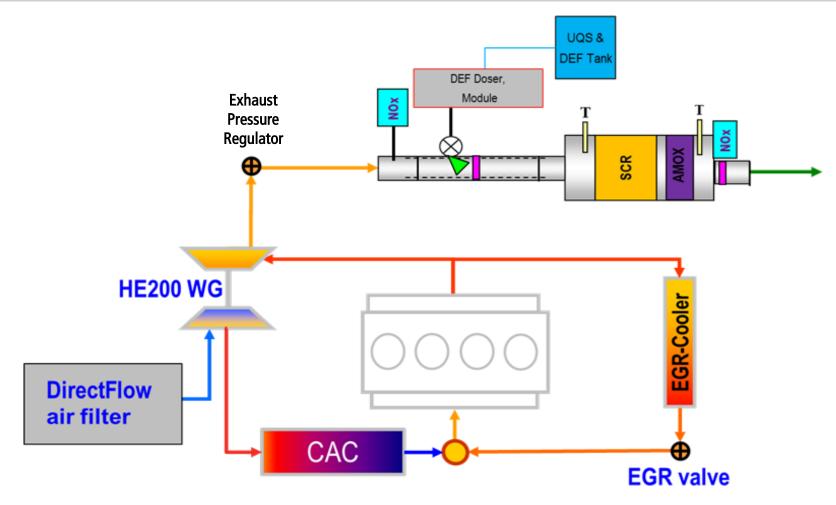
EGR Differential Pressure Sensor

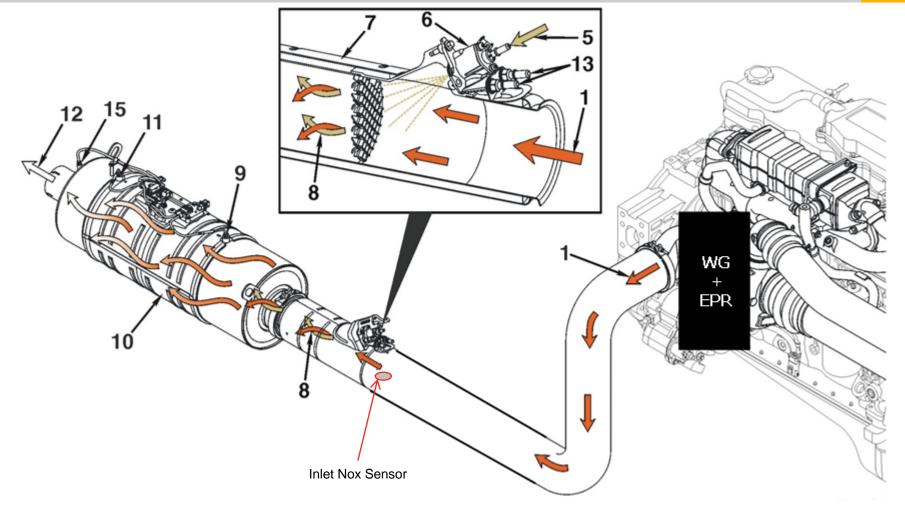

The EGR differential pressure sensor is used by the ECM, in conjunction with the EGR temperature sensor, to calculate the volume of re-circulated exhaust gases that enter the intake manifold from the EGR valve.

EGR Temperature Sensor

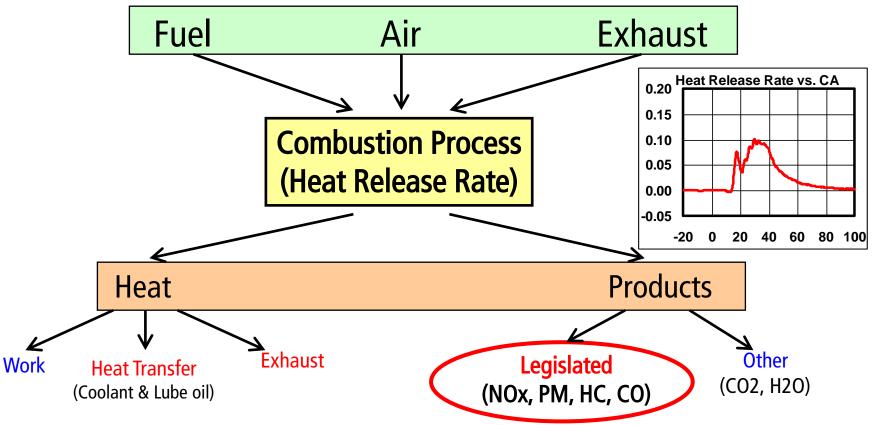

This engine uses the EGR Orifice Pressure Sensor input with the intake manifold pressure sensor to improve EGR flow reading accuracy.


CUMMINS QSF3.8 – Lubrication System – Flow

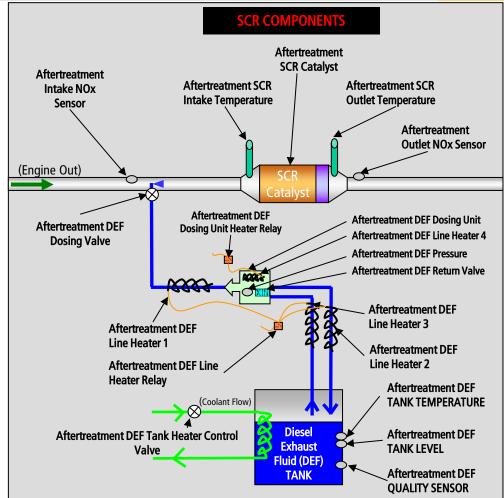

CUMMINS QSF3.8 – Lubrication System – Components


CUMMINS QSF3.8 – Lubrication System – Components

CUMMINS QSF3.8 – After Treatment Device – Architecture



CUMMINS QSF3.8 – After Treatment Device – Architecture


CUMMINS QSF3.8 – After Treatment Device – WHY?

What happens during the combustion process?

CUMMINS QSF3.8 – After Treatment Device – HOW?

- We increase in-cylinder combustion temperature to produce virtually no PM
- We use EGR to partially reduce NOx when determined possible, beneficial and necessary
- We use SCR to reduce NOx caused by high combustion temperatures.
- Thermal Management is obtained/provided by the Exhaust Gas Pressure Regulator

CUMMINS QSF3.8 – Selective Catalyst Reducer

What is SCR?

- Selective catalytic reduction is a NOx control technique for diesel engine exhaust.
- The process involves the injection of Urea (a nitrogenous compound which readily decomposes into ammonia) into the exhaust over a catalyst.
- The ammonia reacts with NOx and produces harmless nitrogen (N₂) and water (H₂O).

This exhaust system includes the:

- After treatment decomposition tube
- After treatment SCR catalyst
- Any ancillary tubing (elbows, etc.) involved.

CUMMINS QSF3.8 – After treatment device – dosing

The after treatment SCR dosing system monitors and injects diesel exhaust fluid (DEF) into the exhaust stream. The SCR dosing system is comprised of:

- Aftertreatment diesel exhaust fluid dosing valve
- Aftertreatment diesel exhaust fluid dosing unit
- Aftertreatment diesel exhaust fluid tank
- Aftertreatment diesel exhaust fluid lines

Diesel Exhaust Fluid (DEF):

- Nontoxic and nonpolluting
- Nonflammable
- Stable and colorless
- Composed of urea and water.
- Urea is naturally occurring and is biodegradable.

CUMMINS QSF3.8 – After treatment device – Fluid

CAUTION

Never attempt to create diesel exhaust fluid by mixing agricultural grade urea with water. Agricultural grade urea does not meet the necessary specifications required and the aftertreatment system may be damaged.

Diesel Exhaust Fluid Specifications

The urea content of the solution must be 32.5 percent ± 0.7

Adding water to the diesel exhaust fluid tank:

- will change the diesel exhaust fluid concentration levels, which may affect SCR efficiency.
- may add contaminates and/or affect the chemical properties of the diesel exhaust fluid, which may damage the aftertreatment system.
- will alter the freeze point and characteristics of the diesel exhaust fluid solution, potentially leading to damaged diesel exhaust fluid dosing system components during cold weather operation.

126

CUMMINS QSF3.8 – After treatment device – Fluid Handling, Storage, and Shelf Life of Diesel Exhaust Fluid

Handling: Diesel exhaust fluid is not harmful to handle, but can be **<u>REACTIVE AND/OR</u>** <u>**CORROSIVE**</u> to certain materials over time:

- Carbon steels, zinc coated carbon steels, and mild iron
- Nonferrous metals and alloys: copper, copper alloys, zinc, and lead
- Solders containing lead, silver, zinc, or copper
- Aluminum and aluminum alloys
- Magnesium and magnesium alloys
- Plastics or metals coated with nickel.

If diesel exhaust fluid comes in contact with any of the materials referenced, clean immediately.

CUMMINS QSF3.8 – After treatment device – Fluid Handling, Storage, and Shelf Life of Diesel Exhaust Fluid

Shelf life: The following conditions are ideal for maintaining diesel exhaust fluid quality and shelf life during prolonged transportation and storage:

- Storage temperature between -5° C to 25° C [23° F to 77° F]
- Store in sealed containers to reduce the possibility of contamination
- Avoid direct sunlight.

In these conditions, diesel exhaust fluid has a minimum expected shelf life of 18 months. However, each 5°C [9°F] increment above recommended temperatures reduces shelf life by 6 months (for example 30°C [86°F] = 12 month shelf life, $35^{\circ}C$ [95°F] = 6 month shelf life, etc.).

STORAGE: Long term storage in a vehicle (in excess of 6 months) is not recommended.

CUMMINS QSF3.8 – After treatment device – Fluid First Aid

In case of contact with eyes, immediately flush eyes with large amounts of water for a minimum of 15 minutes. Do not swallow internally. In the event that diesel exhaust fluid is ingested, contact a physician immediately.

Alternate Names/References for Diesel Exhaust Fluid

The following are other names used for diesel exhaust fluid (DEF):

- Urea
- AUS 32 (Aqueous Urea Solution 32)
- AdBlue[™]
- NOx Reduction Agent
- Catalyst Solution
- Stableguard 32.

Regardless of what the diesel exhaust fluid is called, it must meet the requirements as outlined in the specifications section of this service bulletin.

CUMMINS QSF3.8 – After treatment device – Fluid

Diesel exhaust fluid freezes at approximately -11° C $[12^{\circ}$ F]. The diesel exhaust fluid system on the vehicle is designed to accommodate this and does not require any intervention by the vehicle operator.

Once the DEF has melted, it can be used without problem. The first melted drop has the same consistency as defined in the Diesel Exhaust Fluid specification.

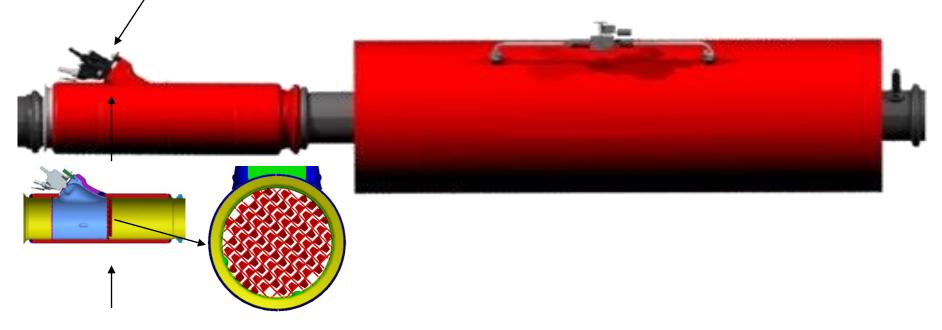
The SCR system is designed to provide heating for the DEF tank and supply lines which will reduce the melting time for frozen DEF.

If DEF freezes, start up and normal operation of the vehicle is not inhibited so the operator is not impacted.

For further information, reference the diesel exhaust fluid manufacturer's Material Safety Data Sheet.

CAUTION

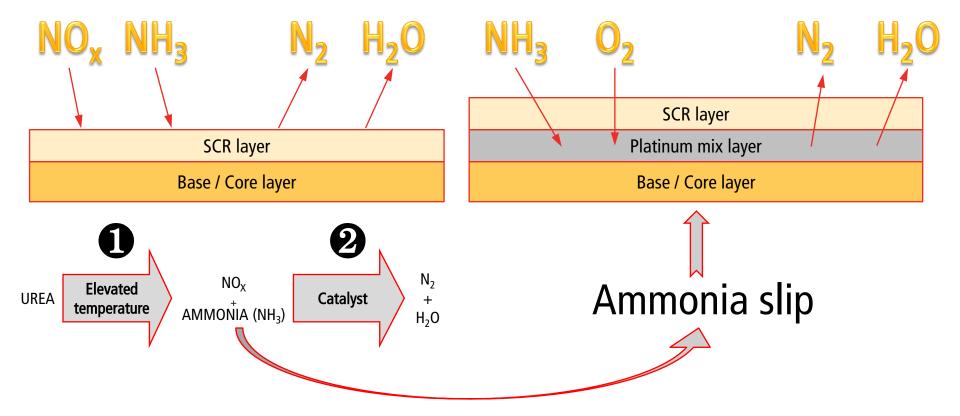
Do not add any chemicals/additives to the diesel exhaust fluid in an effort to prevent freezing. If chemicals/additives are added to the diesel exhaust fluid, the aftertreatment system may be damaged.


To test the concentration of the diesel exhaust fluid, use the Cummins® diesel exhaust fluid refractometer, Part Number 4919554. Follow the instructions provided with this service tool.

For detailed instructions on testing diesel exhaust fluid, reference ISO 22241-2.

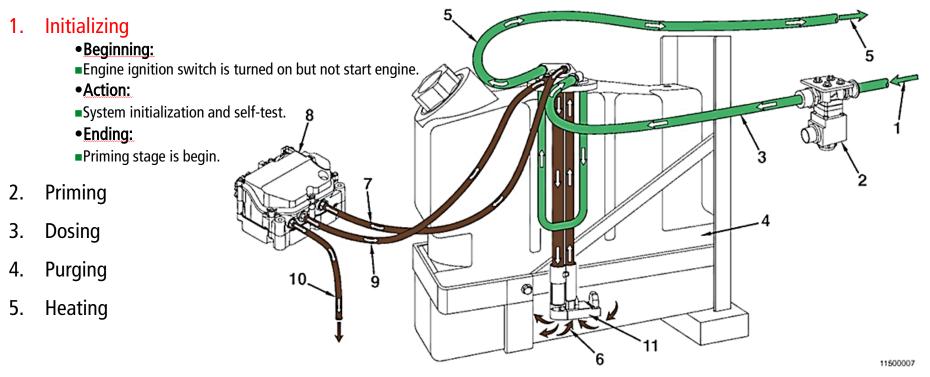
Perform DEF concentration testing with refractometer on the DEF samples with different concentration

DEF Dosing Valve sprays a fine mist of DEF into hot exhaust stream



Decomposition occurs in 3 steps within the Decomposition Tube

- Step 1: Evaporation
- Step 2: Thermolysis
- Step 3: Hydrolysis


Base Reaction in **SCR** brick

Base Reaction in **AMOX** brick

The SCR system is comprised of many components but requires a minimal amount of servicing or driver intervention.

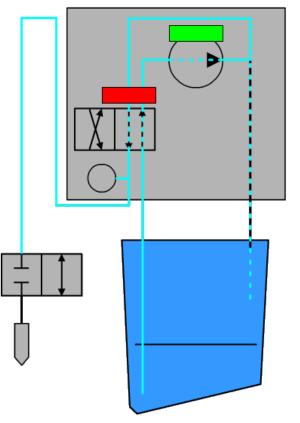
The SCR system is comprised of FIVE main states:

The SCR system is comprised of many components but requires a minimal amount of servicing or driver intervention.

The SCR system is comprised of FIVE main states:

1. Initializing

2. Priming


Beginning:

Engine start successfully.

- And exhaust temperature is higher than preset value. **Action:**
- Pump running to build up constant DEF pressure.
 - Can be monitored by Insite.
- Dosing Valve Test. (Dosing valve will open 2 seconds)
 - DEF pressure should decrease and should recover quickly.

Ending:

•DEF pressure is OK and dosing valve is OK.

The SCR system is comprised of many components but requires a minimal amount of servicing or driver intervention.

The SCR system is comprised of FIVE main states:

1. Initializing

2. Priming

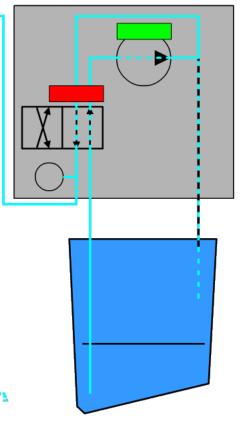
3. Dosing

Beginning:

When system successfully primed, it is ready to dose.

At Dosing State:

Pump runs continuously to maintain system pressure around 900 kPa (130 Psi).


- Dosing valve is closed. No DEF spray into exhaust.
- When ECM determines need to dose it will energies solenoid with PWM signal
- DEF will be delivered into exhaust by impulse injection

DEF pressure is kept in DEF that is supplied by pump is returned to the DEF tank through backflow valve.

Required Conditions for Dosing

Above 200 degrees C @ both Catalyst Inlet and Outlet

- No ACTIVE SCR System Related Fault codes
- DEF Tank Level above 6% (trimable)
- Above 3 degrees C (DEF temp)
- Cummins NOx Calibration

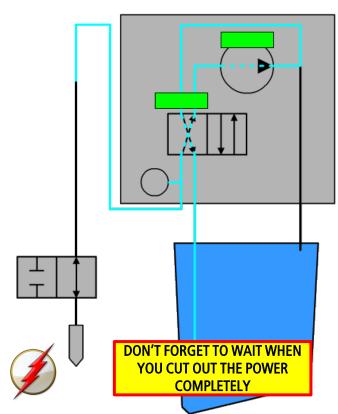
The SCR system is comprised of many components but requires a minimal amount of servicing or driver intervention.

The SCR system is comprised of FIVE main states:

1. Initializing

- 2. Priming
- 3. Dosing

4. Purging


When the driver turns the key OFF, the dosing system will shut down with a purge cycle to prevent DEF from being left in the system and in cold climates, potentially freezing.

After a complete purge, the majority of the system will be free of any remaining DEF.

The DEF dosing unit slides its internal return valve and causes a change in the flow direction of the DEF control.
The DEF dosing unit pulls all of the DEF out of dosing valve and the lines then return the unused DEF to the DEF tank.

In this process, the dosing valve will open, eliminating the vacuum created in the lines for a more complete purge process.

If the main power to DEF controller was removed (via battery cut off or other means) before the purging state was competed, an internal fault will be logged in the ECM.

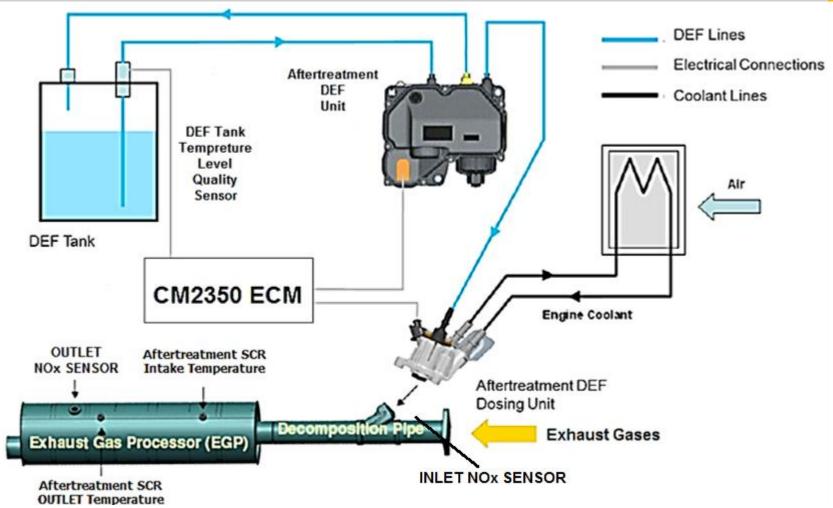
■The incomplete purge counter can be viewed in INSITE[™].

The SCR system is comprised of many components but requires a minimal amount of servicing or driver intervention.

The SCR system is comprised of FIVE main states:

1. Initializing

- 2. Priming
- 3. Dosing
- 4. Purging
- 5. Heating


If the ambient air temperature is below -4° C [25° F], the DEF controller will command the dosing system to go into the defrost state.

- The dosing unit will turn on its internal heater to defrost any remaining DEF inside it.
- If the application has the DEF line heating option, the heated DEF lines will also be commanded on.
- If the DEF tank temperature drops below -5° C [23° F], the DEF tank coolant valve will be commanded open by the DEF controller, engine coolant will flow through the tank to defrost the frozen DEF.
- The system will not prime until every component is defrosted.

If ambient conditions continue to be cold after the system has primed, the DEF controller will command a maintenance heating feature to prevent the system from freezing again.

This feature will cycle the heating ON and OFF to the DEF lines, DEF tank and DEF dosing unit

CUMMINS QSF3.8 – After treatment device – FLOW

Ultrasonic level meter

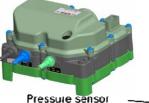
 Assuming the fluid density is constant, time for signal to travel from sender (located in the bottom) to the top reflector and back to receiver (located in the bottom) will vary depending on the fluid level

Smart component (datalink)

- Shown as integrated sensor with temperature and level
- All sensors in this setup are communicating via datalink
- Codes will vary due to setup configuration

Ultrasonic density meter

- Assuming the distance between receiver and sender is constant
- Receiver sends the signal to reflect and receives it back,
- Time to travel this distance will vary depending on the fluid density,
- Though DEF concentration will be verified Smart component (datalink)

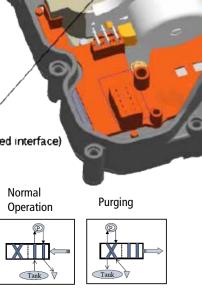

Shown as integrated sensor with temperature and level All sensors in this setup are communicating via datalink Codes will vary due to setup configuration

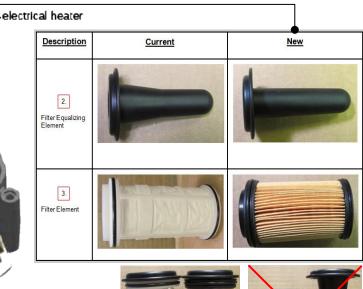
Temperature sensor

Integrated into the bottom of the combination sensor Required to properly start / stop heating/defrosting of the tank Smart component (datalink) in this application, could be hardwired Shown as integrated sensor with temperature and level

-BLACK (B)

(G) GREY -

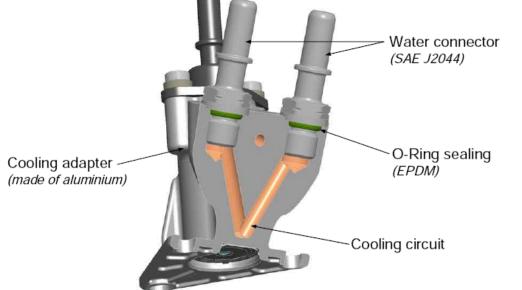

(New position- dean side of filter)


PUMP

- Uni-directional diaphragm pump Pump delivery: 20 L/h @ 9 bar (gauge)
- Pump motor driven by PWM signal from ECM
- Pump can only operate after DEF Unit defrosted to avoid damage
- Max current draw: 4A @ 14 V
- Diaphragm pump + Reverting valve /
- (New orientation in the housing, modified interface)

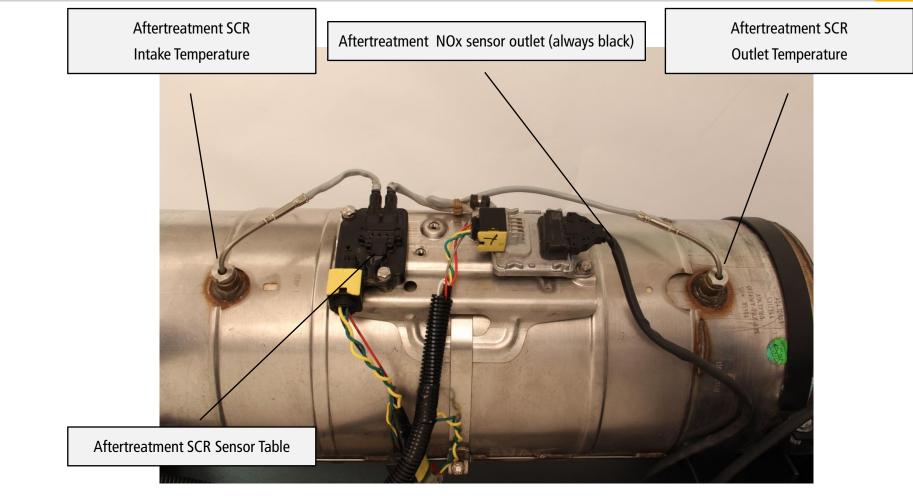
REVERTING V/V

Enable purging with unidirectional pump Current draw: 3A @ 16 V, -15 degC

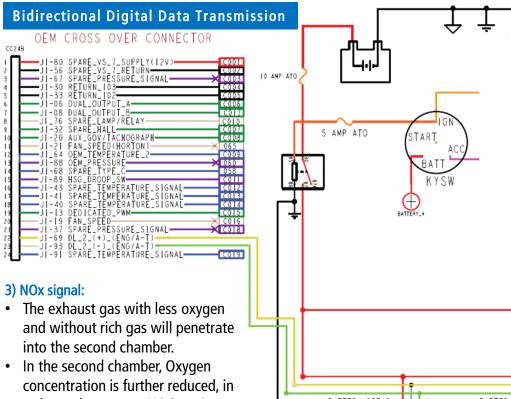

Service Kit for High Capacity Filter will include

- Filter element
- Compensation device/equalizing element
- Tool for filter removal

- Solenoid injector that delivers pressurized urea into exhaust
- Mounted on exhaust pipe with flange
- Water cooled

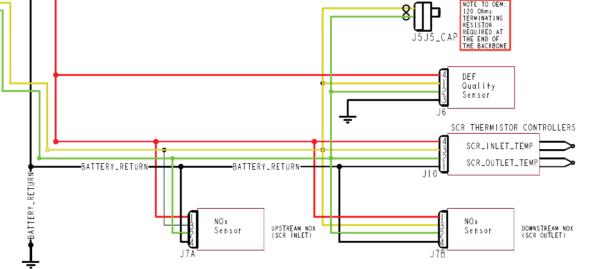

Dosing unit and Gasket

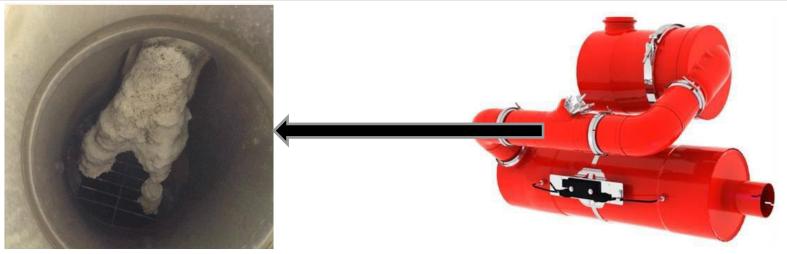
- Insulated Gasket
- Includes an insulation layer
- Utilizes current sealing surface
- Retains thermal isolator
- Addition of metal spacers under DM mounting feet


CUMMINS QSF3.8 – After treatment device – EMISSION CTRL

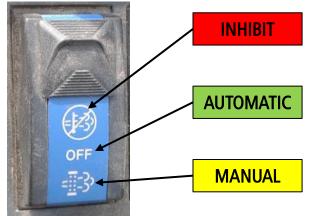
- \square Reads tailpipe NOx emissions \square Accuracy improvement to \pm \square 24 volts and 12 volts sensors \square NOx heating will begin when
- Processor mounting is critical 10 ppm/%,
- □ Not serviceable
- Never pressure wash
- □ Not Re-programmable
- Self Diagnosing intelligent device
- □ Probe cover to improve water □ Inlet and Outlet sensors use splash resistance
- Faster response time
- Extend the temperature range
- 4 pin connector change
- with specific part #'s different connector key Different internal software for Inlet and Outlet sensors
 - (Preprogrammed)

the intake NOx sensor reaches 150 C and the outlet NOx sensor reaches 200 C

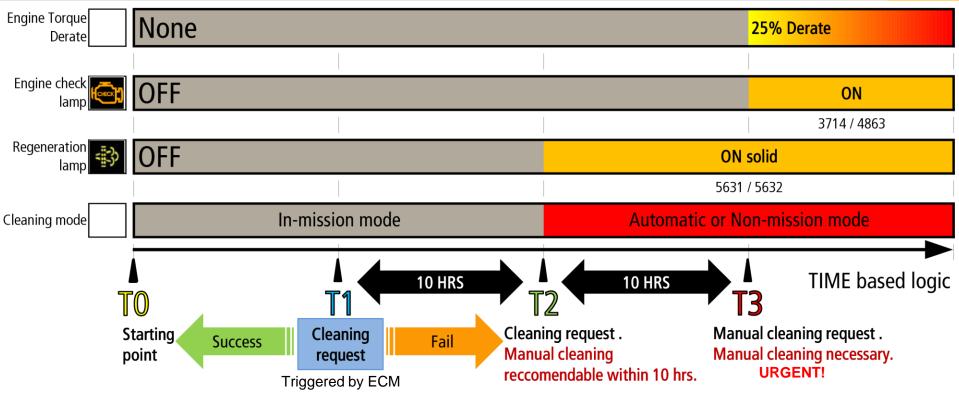

CUMMINS QSF3.8 – After treatment device – EMISSION CTRL

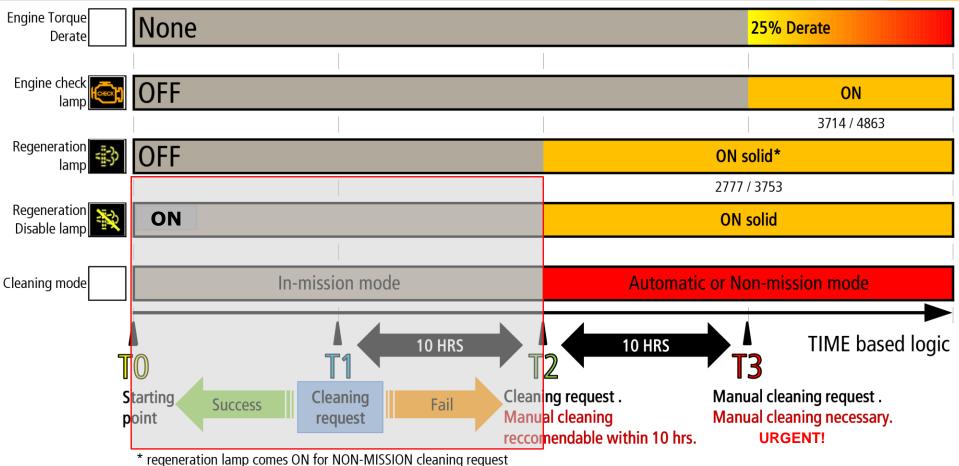

- The NOx sensor provides three signals in parallel:
- 1) Binary λ-signal:
- Obtained by measuring voltage between reference and main pump electrode (=Nernstian voltage)

2) Wide range λ-signal:


- The exhaust gas penetrates into the first cavity and the main pumping cell controls O2 concentration at low-digit ppm levels.
- In this condition, NO will not be decomposed but all rich gases, like HCs, CO and H2 will be oxidized.
- The resulting pumping current is proportional to the wide range λ -signal.

- In the second chamber, Oxygen concentration is further reduced, in order to decompose NO into Oxygen and Nitrogen, using the catalytic activity of a measuring electrode.
- This generated oxygen is measured as the NOx signal.




To avoid urea deposits at the injection point in the DRT, exhaust **cleaning** is needed.

Cleaning is basically, melting down the urea deposits by high temperatures.

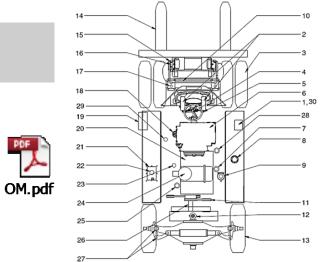
The way to rise exhaust gas temperature is control exhaust throttle.

		Warnin	g lamp	Remark		
Condition	S C R cleaning lamp	leaning Low Check Stop				
	=]3	<u>.</u>	СНЕСК			
SCR needs to be cleaned	On	-	-	-	 Change to a more challenging duty cycle. Perform manual SCR cleaning. 	
SCR needs to be cleaned immediately	0 n	-	On	-	Manual S C R cleaning is required.	
Stationary SCR cleaning status	Flash	-	-	-	-	
DEF level initial warning	-	0 n	-	-	DEF level 10% Engine error code 3497	
DEF level critical warning	-	Flash	-	-	DEF level 5% Engine error code 3498	
DEF level initial warning	-	Flash	0 n	-	DEF level 2.5% Engine error code 1673, 25% derate	
DEF level secondary derate warning	-	Flash	On	-	DEF level 0% Engine error code 3547,3714 50% derate, 30 min.	
DEF level final derate warning	-	Flash	On	O n	Engine error code 3712 Contact Hyundai service center or dealer.	

Manual SCR cleaning applies if the machine is in a fireproof area and there is no plan to turn off the machine during the SCR cleaning.

- * Stop and park the machine.
- Pull the safety button and push the switch to position to initiate the manual SCR cleaning.
 - The engine speed may increase during SCR cleaning and it will take approximately 20~60 minutes depending on condition.
 - The SCR cleaning lamp flash and HEST warning lamp will light on during the manual SCR cleaning function is operating.
 - The SCR cleaning and/or HEST warning lamp will light OFF when the SCR cleaning function is completed.

Diagnostic Tool



MAINTENANCE

Service	Item	D	Service	Oil	Capacity	Service	
interval	No.	Description	Action	symbol		point No.	
	1	Diesel exhaust fluid level	Check, Add	DEF	18.9	-	
	2	Pedal linkage	Check, Adjust	-	-	1	
	3	Drive rim & Tire air pressure	Check, Add	-	-	2	
	4	Hom operation	Check, Replace	-	-	2	
	5	Lamp operation	Check, Replace	-	-	10	
	8	Fuel level	Check, Add	DF	171.5	1	
10 Hours	9	Prefilter (water separator)	Check, Drain	-	-	1	
or daily	11	Fan belt tension	Check, Replace	-	-	1	
-	12	Radiator coolant	Check, Add	С	20.4	1	
	13	Steer rim & Tire air pressure	Check, Add	-	-	2	
	15	Lift chain and fastener	Check, Adjust	-	-	2	
	16	Tilt pin & Mast roller	Check, Lubricate	G	-	2	
	20	Engine oil level	Check, Add	EO	12	1	
	21	Hydraulic oil level	Check, Add	HO	80	1	
Initial 50 Hours	29	Pilot line filter element	Replace	-	-	1	2
50 Hours	6	Transmission oil level	Check, Add	EO	18	1	0
or weekly	26	Fan pulley drive	Check, Lubricate	-	-	1	
	27	Steering axle linkage	Check, Lubricate	G	-	2	
Initial	10	Differential gear oil	Change	GO	12.5	1	\vdash
100 Hours	6	Transmission oil	Change	EO	18	1	
	18	Transmission oil filter	Replace	-	-	1	

		2/				
	10	Differential gear oil	Check, Refill	GO	12.5	1
	11	Fan belt tension	Check, Adjust	-	-	1
250 Hours	14	Forks	Check	-	-	2
or monthly	15	Lift chain	Check, Lubricate	EO	-	2
or morning	16	Tilt pin & Mast roller	Check, Lubricate	G	-	2
	23	Hydraulic oil air breather element	Check, Replace	-	-	1
	28	Brake line filter (strainer)	Check, Clean	-	-	1
	7	Fuel filter	Replace	-	-	1
	9	Prefilter (water separator)	Clean	-	-	1
	17	Mast & Drive axle mounting bolt	Check, Tight	-	-	4
500 Hours	19	Battery	Clean	-	-	2
or	20	Engine oil	Change	EO	12	1
3 monthly	22	Hydraulic oil return filter	Replace	-	-	1
	25	Engine oil filter	Replace	-	-	1
	24	Air cleaner element	Check, Clean	-	-	1
	25	Engine oil and filter	Replace	-	-	1
	10	Differential gear oil	Change	GO	12.5	1
1000	6	Transmission oil	Change	EO	18	1
Hours or	11	Fan belt tension & Damage	Check, Replace	-	-	1
6 monthly	18	Transmission oil filter	Replace	-	-	1
	29	Pilot line filter element	Replace	-	-	1
2000	12	Radiator coolant	Replace	С	6.3	1
Hours	21	Hydraulic strainer	Check, Clean	-	-	1
nours	21	Hydraulic oil *1	Change	HO	80	1
4000 Hours	30	Aftertreatment diesel exhaust fluid dosing unit filter	Change	-	-	1
5000 Hours	21	Hydraulic oil *2	Change	HO	80	1

MAINTENANCE

	Kind of fluid	Capacitył (U.S. gal)	Ambient temperature°C(°F)										
Service point			50	-30	-2	-	10	0	10			40	
			(-58)		(-4	/ (32)	(50) (68)) (86)	(104)	_
				★SAE 5W-40									
Engine oil		12								SAE	E 30		
pan	Engine oil	(3.2)		SAE 10W									
				SAE 10W-30									
				SAE 15W-40									
Torque	Transmission	18			SHELL DONAX TD								
converter transmission	oil	(4.8)								0			
		10 5					-						
Axle	Gear oil	12.5 (3.3)					SHE	:LL	DONA	AX ID			
	II des Pe	. ,		-		410	<u> </u>						-
Hydraulic tank	Hydraulic oil	115 (30)				_ ×is	O VG	15					
larik	Oli	(00)	_			ISO VG 46							
Cabin tilt hand	Hydraulic	raulic 0.7							IS	SO VG 6	68		
pump	oil	(0.2)											
Evoltonia	Diesel fuel ^{★1}	160	★ASTM D975 NO.1									-	
Fuel tank		(42.3)							ASTM	1 D975	NO.2		
Fitting				+			al NO.1	1					
(Grease nipple)	Grease	-				ANLO	ai NO.	-	NI	LGI NO			
(_									
Radiator	Antifreeze :	20.4				Ethyler	ne glyc	ol b	ase p	ermane	nt type (50:50)	
	Soft water	(5.4)	*Ethylene	e glycol b	ase pe	ermanent t	ype (60 : 4	0)					
	Mixture of	18.9	10.5								(00.5		
DEF/AdBlue®	urea and		ISO	22241	1 (Hi	igh-pur	ity urea	1 + (deioniz	ed wate	er (32.5:6	67.5))	
tank	deionized water	(5)											
	water												1

NOTES :

- 1 SAE numbers given to engine oil should be selected according to ambient temperature.
- ② For engine oil used in engine oil pan, use SAE 10W oil when the temperature at the time of engine start up is below 0°C, even if the ambient temperature in daytime is expected to rise to 10°C or more.
- ③ Use engine oil of API service class CJ-4.
- *1 : Ultra low sulfur diesel
 * : Cold region

 sulfur content
 15 ppm

 Russia, CIS, Mongolia

MAINTENANCE – Cummins recommendations

Maintenance Procedures at Daily Interval Crankcase Breather Tube - Check Fuel-Water Separator - Check Lubricating Oil Level - Check Coolant Level - Check Fan, Cooling - Check Drive Belts - Check Air Cleaner Restriction - Check Dust Ejection Valve - Check Air Intake Piping - Check Diesel Exhaust Fluid Level - Check Maintenance Procedures at 250 Hour or 3 Months Charge-Air Cooler - Check

Maintenance Procedures at 500 Hours or 6 Months

Fuel Filter (Canister Type) - Change Fuel Filter (Spin-On Type) - Change Lubricating Oil and Filters - Change¹ Cooling System Antifreeze - Check² Cooling Fan Belt Tensioner - Check Batteries - Check Battery Cables and Connectors - Check Maintenance Procedures at 1000 Hours or 1 Year
Radiator Pressure Cap - Check
Fan Hub, Belt-Driven - Check
Maintenance Procedures at 2000 Hours or 2 Years
Cooling System - Drain and Flush
Radiator Hoses - Check
Maintenance Procedures at 4000 Hours or 3 Years
Aftertreatment Diesel Exhaust Fluid Dosing Unit Filter - Change
Maintenance Procedures at 5000 Hours or 4 Years
Overhead Set - Adjust
Notes:

Use CJ-4 (15W-40) oil that meets CES 20081 specifications.
Coolant testing for additive and glycol levels must be performed at least twice a year. The coolant must be tested for replacement limits every 4000 hours or once a year. whichever occurs first.

Use the following procedure for fuel recommendations and specifications.

ĺ		Table 1: Cummins Inc. Required Diesel Fuel Specifications ¹						
0	Viscosity	1.3 to 4.1 centistokes at 40°C [104°]						
	Cetane Number	42 minimum above 0°C [32°F]; 45 minimum below 0°C [32°F] ²						
ĺ	Sulfur Content	Maximum sulfur content of 15 ppm in the United States and Canada and 10 ppm in the EU						
	Active Sulfur	Copper strip corrosion not to exceed number 3 rating after 3 hours at 50°C [122°F].						
	Water Sediment	Not to exceed 0.05 volume-percent						
. [Carbon Residue	Not to exceed 0.35 mass-percent on 10 volume-percent residuum						
k [Density	0.816 to 0.876 grams per cubic centimeter (g/cc) at 15°C [59°F]						
ĺ	Cloud Point	6°C or 11°F below lowest ambient temperature at which the fuel is expected to operate						
[Ash	Not to exceed 0.02 mass-percent. For vehicles equipped with exhaust aftertreatment, there shall be no detectable ash in the fuel						
	Distillation	10 volume-percent at 282°C [540°F] maximum, 90 volume-percent at 360°C [680°F] maximum, 100 volume-percent at 385°C [725°F]maximum. The distillation curve must be smooth and continuous						
	Lubricity (HFRR)or (SLBOCLE)	High Frequency Reciprocating Rig (HFRR): Maximum of 0.52 mm[0.020 in] Wear Scar Diameter (WSD) at 60°C [140°F].Scuffing Load Ball-on-Cylinder Lubricity Evaluator (SLBOCLE):Minimum of 3100 grams						

Q&A

